184 Commits
2.01 ... 4.5.1

Author SHA1 Message Date
Gary Scavone
fb50d69e08 Lots of documentation updates in advance of new release (4.5.1). 2016-02-22 20:51:07 -05:00
Gary Scavone
126ff9d9e1 Updated RtMidi and RtAudio files after new releases. 2016-02-22 20:05:28 -05:00
Gary Scavone
83b75ed339 Fix for FileWvIn and FileLoop classes so that files are closed unless chunking. 2016-02-03 16:37:51 -05:00
Gary Scavone
f0f6668f25 Fixed typo in documentation. 2016-02-03 14:03:00 -05:00
garyscavone
a506acc708 Merge pull request #53 from arielelkin/master
set ENABLE_TESTABILITY = YES on project.pbxproj
2015-12-13 12:13:29 -05:00
garyscavone
3e42e3db3f Merge pull request #54 from arielelkin/setRawWavePathForDemoProject
set raw wave path for demo project
2015-12-13 12:12:52 -05:00
Ariel Elkin
852bdec0c9 set raw wave path for demo project 2015-12-13 16:55:45 +01:00
Ariel Elkin
9d8673a24e set ENABLE_TESTABILITY = YES on project.pbxproj 2015-12-13 16:42:52 +01:00
garyscavone
57344a11a9 Merge pull request #52 from fsateler/update-config-files
Update config.{sub,guess}
2015-12-13 09:45:33 -05:00
Felipe Sateler
00da5562cd Update config.{sub,guess}
This is needed to build on newer architectures
2015-12-10 22:57:17 -03:00
garyscavone
b02298a9f4 Merge pull request #51 from sonoro1234/clear_alertList_brnch
add Stk::clear_alertList method
2015-12-04 07:54:51 -05:00
Victor Bombi
d1b4dd485b add Stk::clear_alertList method 2015-12-04 09:24:31 +01:00
garyscavone
6d5a779879 Merge pull request #49 from sonoro1234/removealert_branch
add removeSampleRateAlert to ADSR and Asymp
2015-12-02 19:47:51 -05:00
garyscavone
7ea8b10c6a Merge pull request #48 from fsateler/master
Fix install target for new soname scheme
2015-12-02 19:46:50 -05:00
Victor Bombi
0e69055579 VoicForm: change message Clarinet to Voicform 2015-12-01 18:53:14 +01:00
Victor Bombi
c2833d356a add removeSampleRateAlert to ADSR and Asymp to pair with addSampleRateAlert 2015-12-01 18:23:09 +01:00
Felipe Sateler
0f16f683c9 Fix install target for new soname scheme 2015-11-27 20:36:28 -03:00
garyscavone
f3b1f35a8c Merge pull request #47 from fsateler/patch-1
Makefile.in: Reuse version from configure.ac
2015-11-22 19:14:49 -05:00
Felipe Sateler
262fe5a2d1 Makefile.in: Reuse version from configure.ac
Otherwise they get out of sync
2015-11-19 23:49:50 -03:00
Gary Scavone
5e79513e5a Update to play.cpp to play mono files out as stereo. 2015-11-03 16:35:46 -05:00
garyscavone
f13866e696 Merge pull request #44 from arielelkin/StkFrames_cast
StkFrames::operator+:  cast nFrames to unsigned int
2015-04-08 07:59:33 -04:00
Ariel Elkin
9533f2bc66 StkFrames::operator+: cast nFrames to unsigned int given we add it to a value of type unsigned int 2015-04-08 02:48:46 +02:00
Gary Scavone
8c0ad97a25 Update to demo project Makefile.in and Demo.tcl to fix problems due to previous updates. 2015-03-25 16:09:03 -04:00
garyscavone
87461b1471 Merge pull request #42 from Ahbee/fixTypo
fixed typos in `getChannel`  `setChannel()`
2015-03-25 15:53:17 -04:00
Abhi
58fc744ea4 fixed typos in getChannel setChannel() 2015-03-23 23:00:49 -04:00
Gary Scavone
35f66c806e Bugfix in DelayL::setDelay(); Updated tick() functions in RtWvIn and InetWvIn to support channel offset 2014-11-03 15:33:44 -05:00
garyscavone
0a7c541cdc Merge pull request #38 from Ahbee/rename
Renamed StkFrames::copyChannel to StkFrames::getChannel
2014-11-03 14:11:17 -05:00
garyscavone
0e55d2d2b1 Merge pull request #37 from Ahbee/feature-operator+
add StkFrames::operator+
2014-11-03 14:10:09 -05:00
garyscavone
c1c314e7d6 Merge pull request #36 from Ahbee/feature-setChannel
added StkFrames::setChannel
2014-11-03 14:09:40 -05:00
garyscavone
84d947c750 Merge pull request #39 from danlin/master
correct placement of #endif
2014-09-30 07:52:06 -04:00
Daniel Lindenfelser
05560b102d correct placement of #endif 2014-09-30 05:54:50 +02:00
Abhi
759fc187bc Renamed StkFrames::copyChannel
Renamed StkFrames::copyChannel to StkFrames::getChannel.
2014-09-21 21:28:39 -04:00
Abhi
46be0d56c3 added StkFrames::setChannel 2014-09-21 20:43:41 -04:00
Abhi
032e76da70 add StkFrames::operator+ 2014-09-21 18:06:47 -04:00
garyscavone
aae7f609cf Merge pull request #35 from Ahbee/copychannel
adds function StkFrames::copyChannel
2014-09-19 08:21:56 -04:00
garyscavone
d959a1167d Merge pull request #34 from Ahbee/FileWv_tick
add channel arg to WvIn::tick
2014-09-19 08:20:13 -04:00
garyscavone
c9f8c017bc Merge pull request #33 from Ahbee/BugFix_DelayL
Bug fix in delayL and delayA
2014-09-19 08:17:51 -04:00
Abhi
6094f40399 renamed argument sourceChannel to channel 2014-09-16 19:24:29 -04:00
Abhi
a2fb59f476 Fixed spelling 2014-09-16 17:57:30 -04:00
Abhi
f905623d10 added StkFrames::copyChannel 2014-09-16 17:53:18 -04:00
Abhi
b196c58c75 add channel arg to WvIn::tick
StkFrames& tick( StkFrames& frames ) ` is now StkFrames& tick(
StkFrames& frames, unsigned int channel = 0 )` . same applies to
FIleLoop and FileWvIn
2014-09-16 12:50:58 -04:00
Abhi
20b9411a5a fixed bug in DelayA :: setMaximumDelay
inputs_ needs to be set to all zeros
2014-09-13 19:25:08 -04:00
Abhi
bc3cfa8fb5 fixed bug in DelayL :: setMaximumDelay
need to initialize values to zero
2014-09-13 18:01:26 -04:00
Gary Scavone
d1acfb07ed Merge branch 'master' of https://github.com/thestk/stk with local. 2014-09-11 09:49:37 -04:00
Gary Scavone
b5f046871b Memory leak fix in StkFrames::operator= function 2014-09-11 09:46:25 -04:00
garyscavone
1de1f1e63d Merge pull request #30 from Karbonforms/master
fix Twang.cpp: not sure why this bug never was identified earlier (GS)
2014-09-06 21:10:50 -04:00
klf
4ce317a5a7 fix Twang.cpp
Was producing noise (values far in excess of +/- 1.0)
reverted line removed since 4.4.4
2014-08-21 10:01:57 +01:00
garyscavone
2e8a0cdd50 Merge pull request #27 from fsateler/stk-soname
Bump soname with each release
2014-08-11 14:23:42 -04:00
garyscavone
5f9f7f6f08 Merge pull request #29 from radarsat1/master
Finish renaming SKINI.msg and SKINI.tbl to SKINImsg.h and SKINItbl.h, re...
2014-08-11 14:21:59 -04:00
Stephen Sinclair
a2be4bc721 Finish renaming SKINI.msg and SKINI.tbl to SKINImsg.h and SKINItbl.h, respectively. 2014-08-07 11:53:21 +02:00
garyscavone
2437623d67 Merge pull request #26 from fsateler/rename-demo
Rename demo program to stk-demo
2014-06-10 20:25:17 -04:00
Felipe Sateler
0063a57dcb Bump soname with each release
Imitate the libtool -release style of versioning, as long as the ABI is not stable
2014-06-09 21:01:56 -04:00
Felipe Sateler
cc568a58c1 Rename demo program to stk-demo
This allows distributors to ship the program, because demo is too generic a name
2014-06-09 12:17:02 -04:00
Ariel Elkin
1799064d6f Update README-iOS.md 2014-05-12 15:22:07 -04:00
garyscavone
540d45dbbd Merge pull request #25 from arielelkin/rename-skini.msg
Rename SKINI.msg to SKINImsg.h and SKINI.tbl to SKINItbl.h
2014-05-06 09:19:00 -04:00
Ariel Elkin
222f81c1c1 Rename SKINI.msg to SKINImsg.h and SKINI.tbl to SKINItbl.h 2014-05-02 14:02:00 -04:00
Gary Scavone
cbb2fea120 Updated docs for release date. 2014-04-26 16:33:24 -04:00
Gary Scavone
4e4e8053a5 Updated to RtAudio 4.1.1; Fixed typo in ElectricGuitar script. 2014-04-26 15:04:32 -04:00
Gary Scavone
dc2bfe01d0 Added FunctionDiscoveryKeys_devpkey.h file necessary for WASAPI compile in MinGW. 2014-04-23 12:42:10 -04:00
Gary Scavone
ea52f1f1a8 Removed undefined clear() functions in FM, Resonate, Simple, and Sampler classes; a few documentation updates in preparation for 4.5.0 release. 2014-04-23 12:12:35 -04:00
Gary Scavone
1c5d42e64c Updated to latest version of RtAudio with support for WASAPI using MinGW. 2014-04-23 11:39:32 -04:00
Gary Scavone
f1c929a6c4 Merge branch 'master' of https://github.com/thestk/stk 2014-04-18 10:27:55 -04:00
Gary Scavone
d6dba8859f Another update to FileRead for Aiff sowt uncompressed format. 2014-04-18 10:27:17 -04:00
Gary Scavone
069cc1c339 Update to FileRead for Aiff sowt uncompressed format. 2014-04-18 09:43:08 -04:00
garyscavone
32574e97d6 Merge pull request #24 from gperciva/master
add clear() to abstract Instrumnt.h
2014-04-16 10:05:03 -04:00
Graham Percival
a0638ad024 add clear() to abstract Instrumnt.h
This simplies code which uses different instruments.
2014-04-15 09:55:42 +08:00
garyscavone
3ad1a59585 Merge pull request #23 from arielelkin/update_ios_readme
iOS: updated readme
2014-04-13 14:19:54 -04:00
garyscavone
90c33cae06 Merge pull request #22 from arielelkin/iOS_static_lib_reorg
iOS Lib: move static lib target and rawwaves bundle to Products folder
2014-04-13 14:18:43 -04:00
garyscavone
1ce9b33ca3 Merge pull request #19 from arielelkin/Whistle-new-typedefs
Whistle: Replace const declarations with typedefs
2014-04-13 14:18:13 -04:00
garyscavone
3caee97842 Merge pull request #18 from arielelkin/fix-variable-types-in-Iir
fix variable types in Iir
2014-04-13 14:17:42 -04:00
garyscavone
887baf05f8 Merge pull request #17 from arielelkin/fix-variable-types-in-Granulate
Fix variable types in Granulate
2014-04-13 14:16:33 -04:00
Ariel Elkin
aec65bcb76 iOS: updated readme 2014-04-12 00:15:15 +02:00
Ariel Elkin
db6fc1f0df iOS Lib: move static lib target and rawwaves bundle to Products folder 2014-04-12 00:10:39 +02:00
Ariel Elkin
1a2509ead9 Iir: change variable types from std::vector<StkFloat>::size_type to size_t 2014-04-11 23:50:52 +02:00
Ariel Elkin
7388163b7c Granulate.cpp: change variable types from std::vector<Grain>::size_type to size_t 2014-04-11 23:47:51 +02:00
Ariel Elkin
3d9bb4051b Whistle.cpp: Comment out unused variables 2014-04-11 23:44:46 +02:00
Gary Scavone
92ca28918f Bug fix in FreeVerb; Added <cstring> header in Stk.h (which seemed necessary for MinGW). 2014-04-11 16:03:52 -04:00
Gary Scavone
32a3b551d8 Documentation updates in preparation for 4.5.0 release. 2014-04-11 10:18:38 -04:00
Gary Scavone
a9a654862f A few more RtError updates in documentation and .dsp files. 2014-04-11 09:52:02 -04:00
Gary Scavone
a239b58651 More RtError updates in various project files. 2014-04-11 09:44:49 -04:00
Gary Scavone
caf7d2f2eb Updated to new releases of RtAudio and RtMidi. 2014-04-11 09:29:42 -04:00
Gary Scavone
3ee62e42d0 Date changes in preparation for new release. 2014-04-11 09:10:58 -04:00
garyscavone
afa3069dea Merge pull request #21 from arielelkin/readme_improvements
updated readmes
2014-04-11 08:50:41 -04:00
garyscavone
2c136e82ef Merge pull request #20 from arielelkin/Messager-new-typedef
Messager: add MessagerSourceType typedef
2014-04-07 20:50:53 -04:00
garyscavone
17b45a1dad Merge pull request #16 from arielelkin/explicit-casts-in-FileWrite.cpp
FileWrite.cpp: make explicit casts.
2014-04-07 20:24:15 -04:00
Ariel Elkin
dbecf1f7f0 FileWrite::setMatFile : type of iterator should be size_t 2014-04-07 15:20:37 +01:00
garyscavone
4c8e0dec43 Merge pull request #15 from arielelkin/fix-variable-types-in-TapDelay
Fix variable types in tap delay
2014-04-07 10:07:22 -04:00
garyscavone
914a76cae0 Merge pull request #14 from arielelkin/fix-variable-types-in-LentPitShift
fix variable types in LentPitShift
2014-04-07 10:04:21 -04:00
garyscavone
979c6877c9 Merge pull request #13 from arielelkin/remove-register-keyword
remove register keyword
2014-04-07 10:01:19 -04:00
Ariel Elkin
fff3e0b887 update iOS Readme 2014-04-07 13:49:30 +01:00
Ariel Elkin
a027a515af updated readmes 2014-04-07 13:45:13 +01:00
Ariel Elkin
1f0cad64dd Messager: add MessagerSourceType typedef 2014-04-06 08:55:26 +01:00
Ariel Elkin
3d3ab8b86a Whistle: Replace const declarations with typedefs 2014-04-06 08:50:31 +01:00
Ariel Elkin
e4146d6dae Update TapDelay.cpp 2014-04-06 08:39:31 +01:00
Ariel Elkin
79cdf449b5 fix variable types in Iir 2014-04-06 08:37:04 +01:00
Ariel Elkin
ce076784a4 Fix variable types in Granulate 2014-04-06 08:33:25 +01:00
Ariel Elkin
0f6f1c4194 fix variable types in LentPitShift 2014-04-06 08:26:33 +01:00
Ariel Elkin
b2cefb3b53 TapDelay: fix variable types 2014-04-06 08:24:32 +01:00
Ariel Elkin
1468ad7e12 FileWrite.cpp: make explicit casts. 2014-04-06 08:11:52 +01:00
Ariel Elkin
eade52ff5c remove register keyword 2014-04-05 21:39:57 +01:00
garyscavone
4e90d3ffd2 Merge pull request #11 from arielelkin/ios_lib
iOS-friendly static library
2014-03-30 20:23:20 -04:00
Ariel Elkin
b2c4aa87bb full rename from tempiOSDir to iOS/demo 2014-03-30 23:43:32 +01:00
Ariel Elkin
85ca274a33 Temporary rename of iOS Demo direcotry to tempiOSDir 2014-03-30 23:39:20 +01:00
Ariel Elkin
eccc38a093 removed xccheckout file 2014-03-22 01:50:01 +00:00
Ariel Elkin
3ebdbe6977 update xccheckout file for Xcode 5.1 2014-03-14 18:36:01 +00:00
Ariel Elkin
742cf6a202 remove woebegone changes to base STK class 2014-03-14 18:34:43 +00:00
Ariel Elkin
b7cbce0ced move iOS demo project to iOS folder 2014-03-14 18:07:53 +00:00
Ariel Elkin
b5e24dec52 ensure bundle url is there before making a C string from it 2014-03-14 17:51:41 +00:00
Gary Scavone
8658acabee Merge branch 'master' of https://github.com/thestk/stk 2014-03-12 13:30:49 -04:00
Gary Scavone
0e7077c0f3 ADSR fix for decay/release time calculations; FileRead variable size fixes and argument check. 2014-03-12 13:27:05 -04:00
garyscavone
e2f4193e1a Merge pull request #9 from arielelkin/fix_warnings_in_MidiFileIn.cpp
make casts in MidiFileIn.cpp explicit
2014-03-12 12:50:36 -04:00
garyscavone
f38bcceed7 Merge pull request #10 from fsateler/configure-static-shared
Add configure options to build static or shared libraries
2014-03-12 12:48:13 -04:00
Felipe Sateler
9e2cad425a Add configure options to build static or shared libraries 2014-03-12 11:21:39 -03:00
Ariel Elkin
3e43d5e297 Merge branch 'ios_lib' of github.com:arielelkin/stk into ios_lib 2014-03-12 04:49:25 +01:00
Ariel Elkin
8055f1d040 set raw wave path dynamically if needed 2014-03-12 04:49:11 +01:00
Ariel Elkin
5e145ff682 Update README.md 2014-03-08 18:57:24 +01:00
Ariel Elkin
042dea6ff7 Update README.md 2014-03-08 18:56:08 +01:00
Ariel Elkin
04ba9c694e update readme.md for iOS lib 2014-03-08 18:42:52 +01:00
Ariel Elkin
40fe7dae1d Update README.md 2014-03-08 17:37:37 +01:00
Ariel Elkin
cafad844ad make casts in MidiFileIn.cpp explicit 2014-03-08 17:18:45 +01:00
Ariel Elkin
5749dc1c55 Merge branch 'ios_lib' of github.com:arielelkin/stk into ios_lib
Conflicts:
	STK for iOS/README.md
2014-03-08 17:06:13 +01:00
Ariel Elkin
8284487d4b added all files to iOS static library 2014-03-08 17:05:05 +01:00
Ariel Elkin
193a8ebb2e Update README.md 2014-03-04 02:51:23 +00:00
Ariel Elkin
84cf7c5344 add readme for iOS xcode project 2014-03-04 02:50:15 +00:00
Ariel Elkin
11ff75339d update UI in demo ViewController.mm 2014-03-04 02:33:39 +00:00
Ariel Elkin
96543e1b84 added iOS Demo to demo projects 2014-03-04 02:25:34 +00:00
Ariel Elkin
416c02c83c rename xcode projet to STK.xcodeproj 2014-03-03 20:37:43 +00:00
Ariel Elkin
08af1a08b4 Create rawwwaves bundle 2014-03-03 19:45:05 +00:00
garyscavone
4c6e8aee76 Merge pull request #6 from arielelkin/explicit-casts-in-Fir
make casts in Fir.h explicit
2014-02-28 13:02:09 -05:00
garyscavone
b2fbc4f302 Merge pull request #5 from arielelkin/explicit-cast-in-Stk.h-frames
explicitly cast return value in Stk::frames() to match return type
2014-02-28 13:00:25 -05:00
Ariel Elkin
7aefe7caff make casts in Fir.h explicit 2014-02-27 01:19:34 +00:00
Ariel Elkin
00f822e00c explicitly cast return value in frames() to match return type 2014-02-27 01:08:45 +00:00
Ariel Elkin
c2ae82f200 Created libSTK.a 2014-02-25 00:29:49 +00:00
Ariel Elkin
72786d0b72 Tidied Effects, Instruments, and Filters folders 2014-02-24 23:15:18 +00:00
Ariel Elkin
32f23f9538 created Generators, Instruments, Effects, Filters, and Helpers folders 2014-02-24 22:58:05 +00:00
Ariel Elkin
b0e8953a6f made Generators, Instruments, and FM folders 2014-02-23 23:42:18 +00:00
Ariel Elkin
586eeac02e add STK for iOS project with iOS-relevant files 2014-02-23 21:17:30 +00:00
Gary Scavone
1874c0efa9 Merge branch 'master' of https://github.com/thestk/stk 2014-01-18 15:56:04 -05:00
Gary Scavone
9e6a25d046 FileRead fix for long matlab array names. 2014-01-18 15:51:30 -05:00
garyscavone
8912a5c0af Merge pull request #4 from radarsat1/master
Fix several potential compilation issues on various platforms, fix ElectricGuitar script, fix version number, add McGill logo.
2014-01-18 12:49:51 -08:00
Pino Toscano
b017472cdf Build realtime projects only when requested 2014-01-12 15:10:38 +01:00
Felipe Sateler
ed754183e3 Add install target to Makefile.in 2014-01-12 14:58:32 +01:00
Stephen Sinclair
add961c2f4 Change "-lWsock32" to "-lwsock32" for case-sensitive file names.
This is needed to be able to cross-compile for Windows using MingW32
on Linux.
2014-01-12 14:51:49 +01:00
Gary Scavone
e619de2a65 Merge branch 'master' of https://github.com/thestk/stk 2014-01-09 12:31:25 -05:00
Gary Scavone
5e68ce4eeb Commented-out unused arguments in Stk.cpp 2014-01-09 12:24:38 -05:00
garyscavone
ae9e437ae8 Merge pull request #3 from arielelkin/FileRead_fix
Fixes for FileRead.cpp
2014-01-09 09:22:48 -08:00
garyscavone
4699f8ef59 Merge pull request #2 from arielelkin/master
logic issue in TapDelay::setTapDelays()
2014-01-09 09:12:34 -08:00
Ariel Elkin
80db57e79b FileRead::getMatInfo, fixed if-else block 2014-01-05 20:19:27 +00:00
Ariel Elkin
4078d9309d prevent division by zero in FileRead::getRawInfo 2014-01-03 03:36:19 +01:00
Ariel Elkin
18e210ea94 Update TapDelay.cpp 2013-12-29 00:48:48 +01:00
garyscavone
3369940892 Merge pull request #1 from tmatth/filewrite_fix_warnings
FileWrite: fix warnings
2013-12-21 22:56:24 -08:00
Tristan Matthews
c57c52c17e FileWrite: fix warnings
Namely:
- unused but set
- will break strict aliasing
- unchecked return value (fread)
2013-12-02 21:19:31 -05:00
Stephen Sinclair
1bbd2c003a Change version number to 4.4.4. 2013-10-12 14:11:25 +02:00
Stephen Sinclair
80561731fe Add the McGill logo to the doc directory. 2013-10-12 14:11:24 +02:00
Stephen Sinclair
4f0c39e7eb Rename Eguitar.tcl so that ElectricGuitar works on case-sensitive file systems.
The shell script uses a different case for the TCL script's filename.
2013-10-12 14:11:24 +02:00
Stephen Sinclair
b089236578 Remove a spurious echo in the configure script. 2013-10-12 14:11:24 +02:00
Stephen Sinclair
deaabdd041 Missing header include in Md2Skini. 2013-10-12 14:11:24 +02:00
Stephen Sinclair
caeaa5778c handleError member function must be declared const.
Otherwise it causes a compilation failure when called from const
functions.
2013-10-12 14:11:24 +02:00
Stephen Sinclair
c298839886 Extra bracket causes compilation failure in debug mode. 2013-10-12 14:11:24 +02:00
Stephen Sinclair
57e3fe7dae Fix markdown title and pandoc-style metadata. 2013-10-11 15:52:59 +02:00
Stephen Sinclair
4c8691eb08 Rename README and INSTALL files to give them a .md extension.
So that they are recognized as markdown and displayed correctly on the web.
2013-10-11 15:52:59 +02:00
Stephen Sinclair
3d0db65b1c Convert README and INSTALL instructions to markdown. 2013-10-11 15:52:59 +02:00
Stephen Sinclair
c8b7b67680 Add automake-generated files to .gitignore 2013-10-11 15:52:59 +02:00
Ariel Elkin
72095c0a3d Added .gitignore 2013-10-11 15:52:59 +02:00
Stephen Sinclair
e449ac3583 Create Release and Debug directories if they are not present.
Otherwise, build fails if these directories do not exist.
2013-10-11 15:52:59 +02:00
Stephen Sinclair
a117cd0bb1 Add a check for -lpthread. 2013-10-11 15:52:59 +02:00
Gary Scavone
fc877b87bf Version 4.4.4 2013-09-29 23:22:28 +02:00
Gary Scavone
0aec39260a Version 4.4.3 2013-09-29 23:21:29 +02:00
Gary Scavone
baca57040b Version 4.4.2 2013-09-29 23:15:24 +02:00
Gary Scavone
b6a2202011 Version 4.4.1 2013-09-29 23:14:45 +02:00
Gary Scavone
eccd8c9981 Version 4.4.0 2013-09-29 23:11:39 +02:00
Gary Scavone
d199342e86 Version 4.3.1 2013-09-29 23:07:08 +02:00
Gary Scavone
27d9b79dc7 Version 4.3.0 2013-09-29 23:07:00 +02:00
Gary Scavone
2cbce2d8bd Version 4.2.1 2013-09-29 23:06:23 +02:00
Gary Scavone
a6381b9d38 Version 4.2.0 2013-09-29 23:06:14 +02:00
Gary Scavone
cf06b7598b Version 4.1.3 2013-09-29 23:06:05 +02:00
Gary Scavone
586b0add5f Version 4.1.2 2013-09-29 23:05:20 +02:00
Gary Scavone
6e0d1955a8 Version 4.1.1 2013-09-29 23:05:09 +02:00
Gary Scavone
2f09fcd019 Version 4.1 2013-09-29 23:04:59 +02:00
Gary Scavone
81475b04c5 Version 4.0 2013-09-29 23:04:45 +02:00
Gary Scavone
3f126af4e5 Version 3.2 2013-09-29 22:42:55 +02:00
Gary Scavone
4b6500d3de Version 3.1 2013-09-29 22:42:17 +02:00
Gary Scavone
868787a5f9 Version 3.0 2013-09-29 22:41:42 +02:00
Gary Scavone
7c0ee03d60 Version 2.02 2013-09-29 22:40:37 +02:00
657 changed files with 94613 additions and 18466 deletions

188
.gitignore vendored Normal file
View File

@@ -0,0 +1,188 @@
#####
# OS X temporary files that should never be committed
#
# c.f. http://www.westwind.com/reference/os-x/invisibles.html
.DS_Store
# c.f. http://www.westwind.com/reference/os-x/invisibles.html
.Trashes
# c.f. http://www.westwind.com/reference/os-x/invisibles.html
*.swp
# *.lock - this is used and abused by many editors for many different things.
# For the main ones I use (e.g. Eclipse), it should be excluded
# from source-control, but YMMV
*.lock
#
# profile - REMOVED temporarily (on double-checking, this seems incorrect; I can't find it in OS X docs?)
#profile
####
# Xcode temporary files that should never be committed
#
# NB: NIB/XIB files still exist even on Storyboard projects, so we want this...
*~.nib
####
# Xcode build files -
#
# NB: slash on the end, so we only remove the FOLDER, not any files that were badly named "DerivedData"
DerivedData/
# NB: slash on the end, so we only remove the FOLDER, not any files that were badly named "build"
build/
#####
# Xcode private settings (window sizes, bookmarks, breakpoints, custom executables, smart groups)
#
# This is complicated:
#
# SOMETIMES you need to put this file in version control.
# Apple designed it poorly - if you use "custom executables", they are
# saved in this file.
# 99% of projects do NOT use those, so they do NOT want to version control this file.
# ..but if you're in the 1%, comment out the line "*.pbxuser"
# .pbxuser: http://lists.apple.com/archives/xcode-users/2004/Jan/msg00193.html
*.pbxuser
# .mode1v3: http://lists.apple.com/archives/xcode-users/2007/Oct/msg00465.html
*.mode1v3
# .mode2v3: http://lists.apple.com/archives/xcode-users/2007/Oct/msg00465.html
*.mode2v3
# .perspectivev3: http://stackoverflow.com/questions/5223297/xcode-projects-what-is-a-perspectivev3-file
*.perspectivev3
# NB: also, whitelist the default ones, some projects need to use these
!default.pbxuser
!default.mode1v3
!default.mode2v3
!default.perspectivev3
####
# Xcode 4 - semi-personal settings
#
#
# OPTION 1: ---------------------------------
# throw away ALL personal settings (including custom schemes!
# - unless they are "shared")
#
# NB: this is exclusive with OPTION 2 below
xcuserdata
# OPTION 2: ---------------------------------
# get rid of ALL personal settings, but KEEP SOME OF THEM
# - NB: you must manually uncomment the bits you want to keep
#
# NB: this *requires* git v1.8.2 or above; you may need to upgrade to latest OS X,
# or manually install git over the top of the OS X version
# NB: this is exclusive with OPTION 1 above
#
#xcuserdata/**/*
# (requires option 2 above): Personal Schemes
#
#!xcuserdata/**/xcschemes/*
####
# XCode 4 workspaces - more detailed
#
# Workspaces are important! They are a core feature of Xcode - don't exclude them :)
#
# Workspace layout is quite spammy. For reference:
#
# /(root)/
# /(project-name).xcodeproj/
# project.pbxproj
# /project.xcworkspace/
# contents.xcworkspacedata
# /xcuserdata/
# /(your name)/xcuserdatad/
# UserInterfaceState.xcuserstate
# /xcsshareddata/
# /xcschemes/
# (shared scheme name).xcscheme
# /xcuserdata/
# /(your name)/xcuserdatad/
# (private scheme).xcscheme
# xcschememanagement.plist
#
#
####
# Xcode 4 - Deprecated classes
#
# Allegedly, if you manually "deprecate" your classes, they get moved here.
#
# We're using source-control, so this is a "feature" that we do not want!
*.moved-aside
####
# Files generated by automake
Makefile
autom4te.cache
config.log
config.status
configure
projects/demo/Makefile
projects/demo/stk-demo
projects/demo/Release
projects/demo/Debug
projects/effects/Makefile
projects/effects/effects
projects/effects/Release
projects/effects/Debug
projects/eguitar/Makefile
projects/eguitar/eguitar
projects/eguitar/Release
projects/eguitar/Debug
projects/examples/Makefile
projects/examples/audioprobe
projects/examples/bethree
projects/examples/controlbee
projects/examples/crtsine
projects/examples/duplex
projects/examples/foursine
projects/examples/grains
projects/examples/inetIn
projects/examples/inetOut
projects/examples/libMakefile
projects/examples/midiprobe
projects/examples/play
projects/examples/playsmf
projects/examples/record
projects/examples/rtsine
projects/examples/sine
projects/examples/sineosc
projects/examples/threebees
projects/examples/Release
projects/examples/Debug
projects/ragamatic/Makefile
projects/ragamatic/ragamat
projects/ragamatic/Release
projects/ragamatic/Debug
src/libstk.a
src/Release
src/Debug
src/Makefile

197
ADSR.cpp
View File

@@ -1,197 +0,0 @@
/*******************************************/
/* ADSR Subclass of the Envelope Class, */
/* by Perry R. Cook, 1995-96 */
/* This is the traditional ADSR (Attack */
/* Decay, Sustain, Release) ADSR. */
/* It responds to simple KeyOn and KeyOff */
/* messages, keeping track of it's state. */
/* There are two tick (update value) */
/* methods, one returns the value, and */
/* other returns the state (0 = A, 1 = D, */
/* 2 = S, 3 = R) */
/*******************************************/
#include "ADSR.h"
ADSR :: ADSR() : Envelope()
{
target = (MY_FLOAT) 0.0;
value = (MY_FLOAT) 0.0;
attackRate = (MY_FLOAT) 0.001;
decayRate = (MY_FLOAT) 0.001;
sustainLevel = (MY_FLOAT) 0.5;
releaseRate = (MY_FLOAT) 0.01;
state = 0;
}
ADSR :: ~ADSR()
{
/* Nothing to do here */
}
void ADSR :: keyOn()
{
target = (MY_FLOAT) 1.0;
rate = attackRate;
state = 0;
}
void ADSR :: keyOff()
{
target = (MY_FLOAT) 0.0;
rate = releaseRate;
state = 3;
}
void ADSR :: setAttackRate(MY_FLOAT aRate)
{
if (aRate < 0.0) {
printf("negative rates not allowed!!, correcting\n");
attackRate = -aRate;
}
else attackRate = aRate;
}
void ADSR :: setDecayRate(MY_FLOAT aRate)
{
if (aRate < 0.0) {
printf("negative rates not allowed!!, correcting\n");
decayRate = -aRate;
}
else decayRate = aRate;
}
void ADSR :: setSustainLevel(MY_FLOAT aLevel)
{
if (aLevel < 0.0 ) {
printf("Sustain level out of range!!, correcting\n");
sustainLevel = (MY_FLOAT) 0.0;
}
else sustainLevel = aLevel;
}
void ADSR :: setReleaseRate(MY_FLOAT aRate)
{
if (aRate < 0.0) {
printf("negative rates not allowed!!, correcting\n");
releaseRate = -aRate;
}
else releaseRate = aRate;
}
void ADSR :: setAttackTime(MY_FLOAT aTime)
{
if (aTime < 0.0) {
printf("negative times not allowed!!, correcting\n");
attackRate = ONE_OVER_SRATE / -aTime;
}
else attackRate = ONE_OVER_SRATE / aTime;
}
void ADSR :: setDecayTime(MY_FLOAT aTime)
{
if (aTime < 0.0) {
printf("negative times not allowed!!, correcting\n");
decayRate = ONE_OVER_SRATE / -aTime;
}
else decayRate = ONE_OVER_SRATE / aTime;
}
void ADSR :: setReleaseTime(MY_FLOAT aTime)
{
if (aTime < 0.0) {
printf("negative times not allowed!!, correcting\n");
releaseRate = ONE_OVER_SRATE / -aTime;
}
else releaseRate = ONE_OVER_SRATE / aTime;
}
void ADSR :: setAllTimes(MY_FLOAT attTime, MY_FLOAT decTime, MY_FLOAT susLevel, MY_FLOAT relTime)
{
this->setAttackTime(attTime);
this->setDecayTime(decTime);
this->setSustainLevel(susLevel);
this->setReleaseTime(relTime);
}
void ADSR :: setTarget(MY_FLOAT aTarget)
{
target = aTarget;
if (value < target) {
state = ATTACK;
this->setSustainLevel(target);
rate = attackRate;
}
if (value > target) {
this->setSustainLevel(target);
state = DECAY;
rate = decayRate;
}
}
void ADSR :: setValue(MY_FLOAT aValue)
{
state = SUSTAIN;
target = aValue;
value = aValue;
this->setSustainLevel(aValue);
rate = (MY_FLOAT) 0.0;
}
MY_FLOAT ADSR :: tick()
{
if (state==ATTACK) {
value += rate;
if (value >= target) {
value = target;
rate = decayRate;
target = sustainLevel;
state = DECAY;
}
}
else if (state==DECAY) {
value -= decayRate;
if (value <= sustainLevel) {
value = sustainLevel;
rate = (MY_FLOAT) 0.0;
state = SUSTAIN;
}
}
else if (state==RELEASE) {
value -= releaseRate;
if (value <= 0.0) {
value = (MY_FLOAT) 0.0;
state = 4;
}
}
return value;
}
int ADSR :: informTick()
{
this->tick();
return state;
}
MY_FLOAT ADSR :: lastOut()
{
return value;
}
/************ Test Main ************************/
/*
void main()
{
long i;
ADSR test;
test.setAttackRate(0.15);
test.keyOn();
while(test.informTick()==ATTACK) printf("%lf\n",test.tick());
test.setDecayRate(0.1);
while (test.informTick()==DECAY) printf("%lf\n",test.lastOut());
test.setReleaseRate(0.05);
test.keyOff();
while(test.informTick()==RELEASE) printf("%lf\n",test.lastOut());
}
*/

46
ADSR.h
View File

@@ -1,46 +0,0 @@
/*******************************************/
/* ADSR Subclass of the Envelope Class, */
/* by Perry R. Cook, 1995-96 */
/* This is the traditional ADSR (Attack */
/* Decay, Sustain, Release) envelope. */
/* It responds to simple KeyOn and KeyOff */
/* messages, keeping track of it's state. */
/* There are two tick (update value) */
/* methods, one returns the value, and */
/* other returns the state (0 = A, 1 = D, */
/* 2 = S, 3 = R) */
/*******************************************/
#if !defined(__ADSR_h)
#define __ADSR_h
#include "Envelope.h"
class ADSR : public Envelope
{
protected:
MY_FLOAT attackRate;
MY_FLOAT decayRate;
MY_FLOAT sustainLevel;
MY_FLOAT releaseRate;
public:
ADSR();
~ADSR();
void keyOn();
void keyOff();
void setAttackRate(MY_FLOAT aRate);
void setDecayRate(MY_FLOAT aRate);
void setSustainLevel(MY_FLOAT aLevel);
void setReleaseRate(MY_FLOAT aRate);
void setAttackTime(MY_FLOAT aTime);
void setDecayTime(MY_FLOAT aTime);
void setReleaseTime(MY_FLOAT aTime);
void setAllTimes(MY_FLOAT attTime, MY_FLOAT decTime, MY_FLOAT susLevel, MY_FLOAT relTime);
void setTarget(MY_FLOAT aTarget);
void setValue(MY_FLOAT aValue);
MY_FLOAT tick();
int informTick();
MY_FLOAT lastOut();
};
#endif

View File

@@ -1,76 +0,0 @@
/*******************************************/
/* AgogoBell SubClass of Modal4 Instrument*/
/* by Perry R. Cook, 1995-96 */
/* */
/* Controls: CONTROL1 = stickHardness */
/* CONTROL2 = strikePosition*/
/* CONTROL3 = vibFreq */
/* MOD_WHEEL= vibAmt */
/*******************************************/
/* Modes measured from my Agogo Bell by FFT: */
/* 360, 1470, 2401, 4600 */
#include "AgogoBel.h"
#include "SKINI11.msg"
AgogoBel :: AgogoBel() : Modal4()
{
wave = new RawWave("rawwaves/britestk.raw");
wave->normalize();
wave->setRate((MY_FLOAT) 7.0); /* hardstick */
this->setRatioAndReson(0, (MY_FLOAT) 1.00,(MY_FLOAT) 0.999); /* Set our */
this->setRatioAndReson(1, (MY_FLOAT) 4.08,(MY_FLOAT) 0.999); /* resonances */
this->setRatioAndReson(2,(MY_FLOAT) 6.669,(MY_FLOAT) 0.999); /* here */
this->setRatioAndReson(3,(MY_FLOAT) -3725.0, (MY_FLOAT)0.999); /* (One fixed) */
this->setFiltGain(0,(MY_FLOAT) 0.06); /* And filter */
this->setFiltGain(1,(MY_FLOAT) 0.05); /* gains too */
this->setFiltGain(2,(MY_FLOAT) 0.03);
this->setFiltGain(3,(MY_FLOAT) 0.02);
directGain = (MY_FLOAT) 0.25;
}
AgogoBel :: ~AgogoBel()
{
delete wave;
}
void AgogoBel :: setStickHardness(MY_FLOAT hardness)
{
stickHardness = hardness; /* To an approximation, */
wave->setRate((MY_FLOAT) 3.0 + ((MY_FLOAT) 8.0 * stickHardness)); /* hardness <-> center */
masterGain = (MY_FLOAT) 1.0; /* freq and amplitude */
}
void AgogoBel :: setStrikePosition(MY_FLOAT position)
{
MY_FLOAT temp,temp2;
temp2 = position * PI;
strikePosition = position; /* Hack only first */
temp = (MY_FLOAT) sin(0.7 * temp2); /* three modes, */
this->setFiltGain(0,(MY_FLOAT) 0.08 * temp); /* leave the other */
temp = (MY_FLOAT) sin(0.1 + (5.0 * temp2)); /* fixed. Why? */
this->setFiltGain(1,(MY_FLOAT) 0.07 * temp); /* So it doesn't */
temp = (MY_FLOAT) sin(0.2 + (7.0 * temp2)); /* sound like a */
this->setFiltGain(2,(MY_FLOAT) 0.04 * temp); /* sample! */
}
void AgogoBel :: controlChange(int number, MY_FLOAT value)
{
#if defined(_debug_)
printf("AgogoBel : ControlChange: Number=%i Value=%f\n",number,value);
#endif
if (number == __SK_StickHardness_)
this->setStickHardness(value * NORM_7);
else if (number == __SK_StrikePosition_)
this->setStrikePosition(value * NORM_7);
else if (number == __SK_ModFrequency_)
vibr->setFreq((value * NORM_7 * (MY_FLOAT) 12.0));
else if (number == __SK_ModWheel_)
vibrGain = (value * NORM_7);
else if (number == __SK_AfterTouch_Cont_)
this->strike(value * NORM_7);
else {
printf("AgogoBel : Undefined Control Number!!\n");
}
}

View File

@@ -1,26 +0,0 @@
/*******************************************/
/* AgogoBell SubClass of Modal4 Instrument*/
/* by Perry R. Cook, 1995-96 */
/* */
/* Controls: CONTROL1 = stickHardness */
/* CONTROL2 = strikePosition */
/* CONTROL3 = vibFreq */
/* MOD_WHEEL= vibAmt */
/*******************************************/
#if !defined(__AgogoBel_h)
#define __AgogoBel_h
#include "Modal4.h"
class AgogoBel : public Modal4
{
public:
AgogoBel();
~AgogoBel();
void setStickHardness(MY_FLOAT hardness);
void setStrikePosition(MY_FLOAT position);
virtual void controlChange(int number, MY_FLOAT value);
};
#endif

View File

@@ -1,71 +0,0 @@
/******************************************/
/* Hammond(OID) Organ Subclass */
/* of Algorithm 8 (TX81Z) Subclass of */
/* 4 Operator FM Synth */
/* by Perry R. Cook, 1995-96 */
/******************************************/
#include "BeeThree.h"
BeeThree :: BeeThree() : FM4Alg8()
{
this->loadWaves("rawwaves/sinewave.raw",
"rawwaves/sinewave.raw",
"rawwaves/sinewave.raw",
"rawwaves/sinewave.raw");
this->setRatio(0,(MY_FLOAT) 0.999);
this->setRatio(1,(MY_FLOAT) 1.997);
this->setRatio(2,(MY_FLOAT) 3.006);
this->setRatio(3,(MY_FLOAT) 6.009);
gains[0] = __FM4Op_gains[95];
gains[1] = __FM4Op_gains[95];
gains[2] = __FM4Op_gains[99];
gains[3] = __FM4Op_gains[95];
adsr[0]->setAllTimes((MY_FLOAT) 0.005,(MY_FLOAT) 0.003,(MY_FLOAT) 1.0,(MY_FLOAT) 0.01);
adsr[1]->setAllTimes((MY_FLOAT) 0.005,(MY_FLOAT) 0.003,(MY_FLOAT) 1.0,(MY_FLOAT) 0.01);
adsr[2]->setAllTimes((MY_FLOAT) 0.005,(MY_FLOAT) 0.003,(MY_FLOAT) 1.0,(MY_FLOAT) 0.01);
adsr[3]->setAllTimes((MY_FLOAT) 0.005,(MY_FLOAT) 0.001,(MY_FLOAT) 0.4,(MY_FLOAT) 0.03);
twozero->setGain((MY_FLOAT) 0.1);
}
BeeThree :: ~BeeThree()
{
}
void BeeThree :: setFreq(MY_FLOAT frequency)
{
baseFreq = frequency;
waves[0]->setFreq(baseFreq * ratios[0]);
waves[1]->setFreq(baseFreq * ratios[1]);
waves[2]->setFreq(baseFreq * ratios[2]);
waves[3]->setFreq(baseFreq * ratios[3]);
}
MY_FLOAT BeeThree :: tick()
{
MY_FLOAT temp;
if (modDepth > 0.0) {
temp = (MY_FLOAT) 1.0 + (modDepth * vibWave->tick() * (MY_FLOAT) 0.1);
waves[0]->setFreq(baseFreq * ratios[0] * temp);
waves[1]->setFreq(baseFreq * ratios[1] * temp);
waves[2]->setFreq(baseFreq * ratios[2] * temp);
waves[3]->setFreq(baseFreq * ratios[3] * temp);
}
lastOutput = FM4Alg8 :: tick();
return lastOutput;
}
void BeeThree :: noteOn(MY_FLOAT freq, MY_FLOAT amp)
{
gains[0] = amp * __FM4Op_gains[95];
gains[1] = amp * __FM4Op_gains[95];
gains[2] = amp * __FM4Op_gains[99];
gains[3] = amp * __FM4Op_gains[95];
this->setFreq(freq);
this->keyOn();
#if defined(_debug_)
printf("BeeThree : NoteOn: Freq=%lf Amp=%lf\n",freq,amp);
#endif
}

View File

@@ -1,23 +0,0 @@
/******************************************/
/* HammondOid Organ Subclass */
/* of Algorithm 8 (TX81Z) Subclass of */
/* 4 Operator FM Synth */
/* by Perry R. Cook, 1995-96 */
/******************************************/
#if !defined(__BeeThree_h)
#define __BeeThree_h
#include "FM4Alg8.h"
class BeeThree : public FM4Alg8
{
public:
BeeThree();
~BeeThree();
virtual void setFreq(MY_FLOAT frequency);
MY_FLOAT tick();
virtual void noteOn(MY_FLOAT freq, MY_FLOAT amp);
};
#endif

View File

@@ -1,80 +0,0 @@
/*******************************************/
/* BiQuad (2-pole, 2-zero) Filter Class, */
/* by Perry R. Cook, 1995-96 */
/* See books on filters to understand */
/* more about how this works. Nothing */
/* out of the ordinary in this version. */
/*******************************************/
#include "BiQuad.h"
BiQuad :: BiQuad() : Filter()
{
inputs = (MY_FLOAT *) malloc(2 * MY_FLOAT_SIZE);
zeroCoeffs[0] = (MY_FLOAT) 0.0;
zeroCoeffs[1] = (MY_FLOAT) 0.0;
poleCoeffs[0] = (MY_FLOAT) 0.0;
poleCoeffs[1] = (MY_FLOAT) 0.0;
gain = (MY_FLOAT) 1.0;
this->clear();
}
BiQuad :: ~BiQuad()
{
free(inputs);
}
void BiQuad :: clear()
{
inputs[0] = (MY_FLOAT) 0.0;
inputs[1] = (MY_FLOAT) 0.0;
lastOutput = (MY_FLOAT) 0.0;
}
void BiQuad :: setPoleCoeffs(MY_FLOAT *coeffs)
{
poleCoeffs[0] = coeffs[0];
poleCoeffs[1] = coeffs[1];
}
void BiQuad :: setZeroCoeffs(MY_FLOAT *coeffs)
{
zeroCoeffs[0] = coeffs[0];
zeroCoeffs[1] = coeffs[1];
}
void BiQuad :: setFreqAndReson(MY_FLOAT freq, MY_FLOAT reson)
{
poleCoeffs[1] = - (reson * reson);
poleCoeffs[0] = (MY_FLOAT) 2.0 * reson * (MY_FLOAT) cos(TWO_PI * freq / SRATE);
}
void BiQuad :: setEqualGainZeroes()
{
zeroCoeffs[1] = (MY_FLOAT) -1.0;
zeroCoeffs[0] = (MY_FLOAT) 0.0;
}
void BiQuad :: setGain(MY_FLOAT aValue)
{
gain = aValue;
}
MY_FLOAT BiQuad :: tick(MY_FLOAT sample) /* Perform Filter Operation */
{ /* Biquad is two pole, two zero filter */
MY_FLOAT temp; /* Look it up in your favorite DSP text */
temp = sample * gain; /* Here's the math for the */
temp += inputs[0] * poleCoeffs[0]; /* version which implements */
temp += inputs[1] * poleCoeffs[1]; /* only 2 state variables. */
lastOutput = temp; /* This form takes */
lastOutput += (inputs[0] * zeroCoeffs[0]); /* 5 multiplies and */
lastOutput += (inputs[1] * zeroCoeffs[1]); /* 4 adds */
inputs[1] = inputs[0]; /* and 3 moves */
inputs[0] = temp; /* like the 2 state-var form*/
return lastOutput;
}

View File

@@ -1,31 +0,0 @@
/*******************************************/
/* BiQuad (2-pole, 2-zero) Filter Class, */
/* by Perry R. Cook, 1995-96 */
/* See books on filters to understand */
/* more about how this works. Nothing */
/* out of the ordinary in this version. */
/*******************************************/
#if !defined(__BiQuad_h)
#define __BiQuad_h
#include "Filter.h"
class BiQuad : public Filter
{
protected:
MY_FLOAT poleCoeffs[2];
MY_FLOAT zeroCoeffs[2];
public:
BiQuad();
~BiQuad();
void clear();
void setPoleCoeffs(MY_FLOAT *coeffs);
void setZeroCoeffs(MY_FLOAT *coeffs);
void setGain(MY_FLOAT aValue);
void setFreqAndReson(MY_FLOAT freq, MY_FLOAT reson);
void setEqualGainZeroes();
MY_FLOAT tick(MY_FLOAT sample);
};
#endif

View File

@@ -1,46 +0,0 @@
/***********************************************/
/* Simple Bow Table Object, after Smith */
/* by Perry R. Cook, 1995-96 */
/***********************************************/
#include "BowTabl.h"
BowTabl :: BowTabl()
{
offSet = (MY_FLOAT) 0.0; /* offset is a bias, really not needed unless */
/* friction is different in each direction */
slope = (MY_FLOAT) 0.1; /* controls width of friction pulse, */
/* related to bowForce */
}
BowTabl :: ~BowTabl()
{
}
void BowTabl :: setOffset(MY_FLOAT aValue)
{
offSet = aValue;
}
void BowTabl :: setSlope(MY_FLOAT aValue)
{
slope = aValue;
}
MY_FLOAT BowTabl :: lookup(MY_FLOAT sample) /* Perform Table Lookup */
{ /* sample is differential */
/* string vs. bow velocity */
MY_FLOAT input;
input = sample + offSet; /* add bias to sample */
input *= slope; /* scale it */
lastOutput = (MY_FLOAT) fabs((double) input) + (MY_FLOAT) 0.75; /* below min delta, friction = 1 */
lastOutput = (MY_FLOAT) pow(lastOutput,(MY_FLOAT) -4.0);
// if (lastOutput < 0.0 ) lastOutput = 0.0; /* minimum friction is 0.0 */
if (lastOutput > 1.0 ) lastOutput = (MY_FLOAT) 1.0; /* maximum friction is 1.0 */
return lastOutput;
}
MY_FLOAT BowTabl :: lastOut()
{
return lastOutput;
}

View File

@@ -1,22 +0,0 @@
/***********************************************/
/* Simple Bow Table Object, after Smith */
/* by Perry R. Cook, 1995-96 */
/***********************************************/
#include "Object.h"
class BowTabl : public Object
{
protected:
MY_FLOAT offSet;
MY_FLOAT slope;
MY_FLOAT lastOutput;
public:
BowTabl();
~BowTabl();
void setOffset(MY_FLOAT aValue);
void setSlope(MY_FLOAT aValue);
MY_FLOAT lookup(MY_FLOAT sample);
MY_FLOAT lastOut();
};

161
Bowed.cpp
View File

@@ -1,161 +0,0 @@
/******************************************/
/* Bowed String model ala Smith */
/* after McIntyre, Schumacher, Woodhouse */
/* by Perry Cook, 1995-96 */
/* */
/* This is a waveguide model, and thus */
/* relates to various Stanford Univ. */
/* and possibly Yamaha and other patents.*/
/* */
/* Controls: CONTROL1 = bowPressure */
/* CONTROL2 = bowPosition */
/* CONTROL3 = vibrFreq */
/* MOD_WHEEL= vibrGain */
/* */
/******************************************/
#include "Bowed.h"
#include "SKINI11.msg"
Bowed :: Bowed(MY_FLOAT lowestFreq)
{
long length;
length = (long) (SRATE / lowestFreq + 1);
neckDelay = new DLineL(length);
length >>= 1;
bridgeDelay = new DLineL(length);
bowTabl = new BowTabl;
reflFilt = new OnePole;
bodyFilt = new BiQuad;
vibr = new RawLoop("rawwaves/sinewave.raw");
adsr = new ADSR;
vibrGain = (MY_FLOAT) 0.0;
neckDelay->setDelay((MY_FLOAT) 100.0);
bridgeDelay->setDelay((MY_FLOAT) 29.0);
bowTabl->setSlope((MY_FLOAT) 3.0);
reflFilt->setPole((MY_FLOAT) (0.6 - (0.1 * 22050.0 / SRATE)));
reflFilt->setGain((MY_FLOAT) 0.95);
bodyFilt->setFreqAndReson((MY_FLOAT) 500.0, (MY_FLOAT) 0.85);
bodyFilt->setEqualGainZeroes();
bodyFilt->setGain((MY_FLOAT) 0.2);
vibr->normalize();
vibr->setFreq((MY_FLOAT) 6.12723);
adsr->setAllTimes((MY_FLOAT) 0.02,(MY_FLOAT) 0.005,(MY_FLOAT) 0.9,(MY_FLOAT) 0.01);
betaRatio = (MY_FLOAT) 0.127236;
}
Bowed :: ~Bowed()
{
delete neckDelay;
delete bridgeDelay;
delete bowTabl;
delete reflFilt;
delete bodyFilt;
delete vibr;
delete adsr;
}
void Bowed :: clear()
{
neckDelay->clear();
bridgeDelay->clear();
}
void Bowed :: setFreq(MY_FLOAT frequency)
{
baseDelay = SRATE / frequency - (MY_FLOAT) 4.0; /* delay - approx. filter delay */
bridgeDelay->setDelay(baseDelay * betaRatio); /* bow to bridge length */
neckDelay->setDelay(baseDelay * ((MY_FLOAT) 1.0 - betaRatio)); /* bow to nut (finger) length */
}
void Bowed :: startBowing(MY_FLOAT amplitude, MY_FLOAT rate)
{
adsr->setRate(rate);
adsr->keyOn();
maxVelocity = (MY_FLOAT) 0.03 + ((MY_FLOAT) 0.2 * amplitude);
}
void Bowed :: stopBowing(MY_FLOAT rate)
{
adsr->setRate(rate);
adsr->keyOff();
}
void Bowed :: noteOn(MY_FLOAT freq, MY_FLOAT amp)
{
this->startBowing(amp,amp * (MY_FLOAT) 0.001);
this->setFreq(freq);
#if defined(_debug_)
printf("Bowed : NoteOn: Freq=%lf Amp=%lf\n",freq,amp);
#endif
}
void Bowed :: noteOff(MY_FLOAT amp)
{
this->stopBowing(((MY_FLOAT) 1.0 - amp) * (MY_FLOAT) 0.005);
#if defined(_debug_)
printf("Bowed : NoteOff: Amp=%lf\n",amp);
#endif
}
void Bowed :: setVibrato(MY_FLOAT amount)
{
vibrGain = amount;
}
MY_FLOAT Bowed :: tick()
{
MY_FLOAT bowVelocity;
MY_FLOAT bridgeRefl=(MY_FLOAT) 0,nutRefl=(MY_FLOAT) 0;
MY_FLOAT newVel=(MY_FLOAT) 0,velDiff=(MY_FLOAT) 0,stringVel=(MY_FLOAT) 0;
bowVelocity = maxVelocity * adsr->tick();
bridgeRefl = -reflFilt->tick(
bridgeDelay->lastOut()); /* Bridge Reflection */
nutRefl = -neckDelay->lastOut(); /* Nut Reflection */
stringVel = bridgeRefl + nutRefl; /* Sum is String Velocity */
velDiff = bowVelocity - stringVel; /* Differential Velocity */
newVel = velDiff * bowTabl->lookup(velDiff); /* Non-Lin Bow Function */
neckDelay->tick(bridgeRefl + newVel); /* Do string */
bridgeDelay->tick(nutRefl + newVel); /* propagations */
if (vibrGain > 0.0) {
neckDelay->setDelay((baseDelay * ((MY_FLOAT) 1.0 - betaRatio)) +
(baseDelay * vibrGain*vibr->tick()));
}
lastOutput = bodyFilt->tick(bridgeDelay->lastOut());
return lastOutput;
}
void Bowed :: controlChange(int number, MY_FLOAT value)
{
#if defined(_debug_)
printf("Bowed : ControlChange: Number=%i Value=%f\n",number,value);
#endif
if (number == __SK_BowPressure_)
bowTabl->setSlope((MY_FLOAT) 5.0 - ((MY_FLOAT) 4.0 * value * NORM_7));
else if (number == __SK_BowPosition_) {
betaRatio = (MY_FLOAT) 0.027236 + ((MY_FLOAT) 0.2 * value * NORM_7);
bridgeDelay->setDelay(baseDelay * betaRatio); /* bow to bridge length */
neckDelay->setDelay(baseDelay * ((MY_FLOAT) 1.0 - betaRatio)); /* bow to nut (finger) length */
}
else if (number == __SK_ModFrequency_)
vibr->setFreq((value * NORM_7 * (MY_FLOAT) 12.0));
else if (number == __SK_ModWheel_)
vibrGain = (value * NORM_7 * (MY_FLOAT) 0.4);
else if (number == __SK_AfterTouch_Cont_)
adsr->setTarget(value * NORM_7);
else {
printf("Bowed : Undefined Control Number!!\n");
}
}

56
Bowed.h
View File

@@ -1,56 +0,0 @@
/******************************************/
/* Bowed String model ala Smith */
/* after McIntyre, Schumacher, Woodhouse */
/* by Perry Cook, 1995-96 */
/* */
/* This is a waveguide model, and thus */
/* relates to various Stanford Univ. */
/* and possibly Yamaha and other patents.*/
/* */
/* Controls: CONTROL1 = bowPressure */
/* CONTROL2 = bowPosition */
/* CONTROL3 = vibrFreq */
/* MOD_WHEEL= vibrGain */
/* */
/******************************************/
#if !defined(__Bowed_h)
#define __Bowed_h
#include "Instrmnt.h"
#include "DLineL.h"
#include "BowTabl.h"
#include "OnePole.h"
#include "BiQuad.h"
#include "RawLoop.h"
#include "ADSR.h"
class Bowed : public Instrmnt
{
protected:
DLineL *neckDelay;
DLineL *bridgeDelay;
BowTabl *bowTabl;
OnePole *reflFilt;
BiQuad *bodyFilt;
RawLoop *vibr;
ADSR *adsr;
MY_FLOAT maxVelocity;
MY_FLOAT baseDelay;
MY_FLOAT vibrGain;
MY_FLOAT betaRatio;
public:
Bowed(MY_FLOAT lowestFreq);
~Bowed();
void clear();
void startBowing(MY_FLOAT amplitude,MY_FLOAT rate);
void stopBowing(MY_FLOAT rate);
virtual void noteOn(MY_FLOAT freq, MY_FLOAT amp);
virtual void noteOff(MY_FLOAT amp);
virtual void setFreq(MY_FLOAT frequency);
void setVibrato(MY_FLOAT amount);
virtual void controlChange(int number, MY_FLOAT value);
virtual MY_FLOAT tick();
};
#endif

131
Brass.cpp
View File

@@ -1,131 +0,0 @@
/******************************************/
/* Waveguide Brass Instrument Model ala */
/* Cook (TBone, HosePlayer) */
/* by Perry R. Cook, 1995-96 */
/* */
/* This is a waveguide model, and thus */
/* relates to various Stanford Univ. */
/* and possibly Yamaha and other patents.*/
/* */
/* Controls: CONTROL1 = lipTension */
/* CONTROL2 = slideLength */
/* CONTROL3 = vibFreq */
/* MOD_WHEEL= vibAmt */
/******************************************/
#include "Brass.h"
#include "SKINI11.msg"
Brass :: Brass(MY_FLOAT lowestFreq)
{
length = (long) (SRATE / lowestFreq + 1);
delayLine = new DLineA(length);
lipFilter = new LipFilt;
dcBlock = new DCBlock;
adsr = new ADSR;
adsr->setAllTimes((MY_FLOAT) 0.005, (MY_FLOAT) 0.001, (MY_FLOAT) 1.0, (MY_FLOAT) 0.010);
vibr = new RawLoop("rawwaves/sinewave.raw");
this->clear();
vibr->normalize();
vibr->setFreq((MY_FLOAT) 6.137);
vibrGain = (MY_FLOAT) 0.05; /* breath periodic vibrato component */
maxPressure = (MY_FLOAT) 0.0;
}
Brass :: ~Brass()
{
delete delayLine;
delete lipFilter;
delete dcBlock;
delete adsr;
delete vibr;
}
void Brass :: clear()
{
delayLine->clear();
lipFilter->clear();
dcBlock->clear();
}
void Brass :: setFreq(MY_FLOAT frequency)
{
slideTarget = (SRATE / frequency * (MY_FLOAT) 2.0) + (MY_FLOAT) 3.0;
/* fudge correction for filter delays */
delayLine->setDelay(slideTarget); /* we'll play a harmonic */
lipTarget = frequency;
lipFilter->setFreq(frequency);
}
void Brass :: setLip(MY_FLOAT frequency)
{
lipFilter->setFreq(frequency);
}
void Brass :: startBlowing(MY_FLOAT amplitude,MY_FLOAT rate)
{
adsr->setAttackRate(rate);
maxPressure = amplitude;
adsr->keyOn();
}
void Brass :: stopBlowing(MY_FLOAT rate)
{
adsr->setReleaseRate(rate);
adsr->keyOff();
}
void Brass :: noteOn(MY_FLOAT freq, MY_FLOAT amp)
{
this->setFreq(freq);
this->startBlowing(amp, amp * (MY_FLOAT) 0.001);
#if defined(_debug_)
printf("Brass : NoteOn: Freq=%lf Amp=%lf\n",freq,amp);
#endif
}
void Brass :: noteOff(MY_FLOAT amp)
{
this->stopBlowing(amp * (MY_FLOAT) 0.005);
#if defined(_debug_)
printf("Brass : NoteOff: Amp=%lf\n",amp);
#endif
}
MY_FLOAT Brass :: tick()
{
MY_FLOAT breathPressure;
breathPressure = maxPressure * adsr->tick();
breathPressure += vibrGain * vibr->tick();
lastOutput = delayLine->tick( /* bore delay */
dcBlock->tick( /* block DC */
lipFilter->tick((MY_FLOAT) 0.3 * breathPressure, /* mouth input */
(MY_FLOAT) 0.85 * delayLine->lastOut()))); /* and bore reflection */
return lastOutput;
}
void Brass :: controlChange(int number, MY_FLOAT value)
{
MY_FLOAT temp;
#if defined(_debug_)
printf("Brass : ControlChange: Number=%i Value=%f\n",number,value);
#endif
if (number == __SK_LipTension_) {
temp = lipTarget * (MY_FLOAT) pow(4.0,(2.0*value*NORM_7) - 1.0);
this->setLip(temp);
}
else if (number == __SK_SlideLength_)
delayLine->setDelay(slideTarget * ((MY_FLOAT) 0.5 + (value * NORM_7)));
else if (number == __SK_ModFrequency_)
vibr->setFreq((value * NORM_7 * (MY_FLOAT) 12.0));
else if (number == __SK_ModWheel_ )
vibrGain = (value * NORM_7 * (MY_FLOAT) 0.4);
else if (number == __SK_AfterTouch_Cont_)
adsr->setTarget(value * NORM_7);
else {
printf("Brass : Undefined Control Number!!\n");
}
}

53
Brass.h
View File

@@ -1,53 +0,0 @@
/******************************************/
/* Simple Brass Instrument Model ala */
/* Cook (TBone, HosePlayer) */
/* by Perry R. Cook, 1995-96 */
/* */
/* This is a waveguide model, and thus */
/* relates to various Stanford Univ. */
/* and possibly Yamaha and other patents.*/
/* */
/* Controls: CONTROL1 = lipTension */
/* CONTROL2 = slideLength */
/* CONTROL3 = vibFreq */
/* MOD_WHEEL= vibAmt */
/******************************************/
#if !defined(__Brass_h)
#define __Brass_h
#include "Instrmnt.h"
#include "DLineA.h"
#include "LipFilt.h"
#include "DCBlock.h"
#include "ADSR.h"
#include "RawLoop.h"
class Brass: public Instrmnt
{
protected:
DLineA *delayLine;
LipFilt *lipFilter;
DCBlock *dcBlock;
ADSR *adsr;
RawLoop *vibr;
long length;
MY_FLOAT lipTarget;
MY_FLOAT slideTarget;
MY_FLOAT vibrGain;
MY_FLOAT maxPressure;
public:
Brass(MY_FLOAT lowestFreq);
~Brass();
void clear();
virtual void setFreq(MY_FLOAT frequency);
void setLip(MY_FLOAT frequency);
void startBlowing(MY_FLOAT amplitude,MY_FLOAT rate);
void stopBlowing(MY_FLOAT rate);
virtual void noteOn(MY_FLOAT freq, MY_FLOAT amp);
virtual void noteOff(MY_FLOAT amp);
virtual void controlChange(int number, MY_FLOAT value);
virtual MY_FLOAT tick();
};
#endif

View File

@@ -1,126 +0,0 @@
/******************************************/
/* Waveguide Clarinet model ala Smith */
/* after McIntyre, Schumacher, Woodhouse */
/* by Perry Cook, 1995-96 */
/* */
/* This is a waveguide model, and thus */
/* relates to various Stanford Univ. */
/* and possibly Yamaha and other patents.*/
/* */
/* Controls: CONTROL1 = reedStiffns */
/* CONTROL2 = noiseGain */
/* CONTROL3 = vibFreq */
/* MOD_WHEEL= vibAmt */
/******************************************/
#include "Clarinet.h"
#include "SKINI11.msg"
Clarinet :: Clarinet(MY_FLOAT lowestFreq)
{
length = (long) (SRATE / lowestFreq + 1);
delayLine = new DLineL(length);
reedTable = new ReedTabl;
reedTable->setOffset((MY_FLOAT) 0.7);
reedTable->setSlope((MY_FLOAT) -0.3);
filter = new OneZero;
envelope = new Envelope;
noise = new Noise;
vibr = new RawLoop("rawwaves/sinewave.raw");
vibr->normalize();
vibr->setFreq((MY_FLOAT) 5.735);
outputGain = (MY_FLOAT) 1.0;
noiseGain = (MY_FLOAT) 0.2;
vibrGain = (MY_FLOAT) 0.1;
}
Clarinet :: ~Clarinet()
{
delete delayLine;
delete reedTable;
delete filter;
delete envelope;
delete noise;
delete vibr;
}
void Clarinet :: clear()
{
delayLine->clear();
filter->tick((MY_FLOAT) 0.0);
}
void Clarinet :: setFreq(MY_FLOAT frequency)
{
delayLine->setDelay /* length - approx filter delay */
((SRATE / frequency) * (MY_FLOAT) 0.5 - (MY_FLOAT) 1.5);
}
void Clarinet :: startBlowing(MY_FLOAT amplitude,MY_FLOAT rate)
{
envelope->setRate(rate);
envelope->setTarget(amplitude);
}
void Clarinet :: stopBlowing(MY_FLOAT rate)
{
envelope->setRate(rate);
envelope->setTarget((MY_FLOAT) 0.0);
}
void Clarinet :: noteOn(MY_FLOAT freq, MY_FLOAT amp)
{
this->setFreq(freq);
this->startBlowing((MY_FLOAT) 0.55 + (amp * (MY_FLOAT) 0.30),amp * (MY_FLOAT) 0.005);
outputGain = amp + (MY_FLOAT) 0.001;
#if defined(_debug_)
printf("Clarinet : NoteOn: Freq=%lf Amp=%lf\n",freq,amp);
#endif
}
void Clarinet :: noteOff(MY_FLOAT amp)
{
this->stopBlowing(amp * (MY_FLOAT) 0.01);
#if defined(_debug_)
printf("Clarinet : NoteOff: Amp=%lf\n",amp);
#endif
}
MY_FLOAT Clarinet :: tick()
{
MY_FLOAT pressureDiff;
MY_FLOAT breathPressure;
breathPressure = envelope->tick();
breathPressure += breathPressure *
noiseGain * noise->tick();
breathPressure += breathPressure *
vibrGain * vibr->tick();
pressureDiff = filter->tick(delayLine->lastOut()); /* differential pressure */
pressureDiff = (pressureDiff * (MY_FLOAT) -0.95) - breathPressure; /* of reflected and mouth */
lastOutput = delayLine->tick(breathPressure + /* perform scattering */
pressureDiff * reedTable->lookup(pressureDiff)); /* in economical way */
lastOutput *= outputGain;
return lastOutput;
}
void Clarinet :: controlChange(int number, MY_FLOAT value)
{
#if defined(_debug_)
printf("Clarinet : ControlChange: Number=%i Value=%f\n",number,value);
#endif
if (number == __SK_ReedStiffness_)
reedTable->setSlope((MY_FLOAT) -0.44 + ((MY_FLOAT) 0.26 * value * NORM_7));
else if (number == __SK_NoiseLevel_)
noiseGain = (value * NORM_7 * (MY_FLOAT) 0.4);
else if (number == __SK_ModFrequency_)
vibr->setFreq((value * NORM_7 * (MY_FLOAT) 12.0));
else if (number == __SK_ModWheel_)
vibrGain = (value * NORM_7 * (MY_FLOAT) 0.5);
else if (number == __SK_AfterTouch_Cont_) {
envelope->setValue(value * NORM_7);
}
else {
printf("Clarinet : Undefined Control Number!!\n");
}
}

View File

@@ -1,53 +0,0 @@
/******************************************/
/* Clarinet model ala Smith */
/* after McIntyre, Schumacher, Woodhouse */
/* by Perry Cook, 1995-96 */
/* */
/* This is a waveguide model, and thus */
/* relates to various Stanford Univ. */
/* and possibly Yamaha and other patents.*/
/* */
/* Controls: CONTROL1 = reedStiffns */
/* CONTROL2 = noiseGain */
/* CONTROL3 = vibFreq */
/* MOD_WHEEL= vibAmt */
/******************************************/
#if !defined(__Clarinet_h)
#define __Clarinet_h
#include "Instrmnt.h"
#include "DLineL.h"
#include "ReedTabl.h"
#include "OneZero.h"
#include "Envelope.h"
#include "Noise.h"
#include "RawLoop.h"
class Clarinet : public Instrmnt
{
protected:
DLineL *delayLine;
ReedTabl *reedTable;
OneZero *filter;
Envelope *envelope;
Noise *noise;
RawLoop *vibr;
long length;
MY_FLOAT outputGain;
MY_FLOAT noiseGain;
MY_FLOAT vibrGain;
public:
Clarinet(MY_FLOAT lowestFreq);
~Clarinet();
void clear();
virtual void setFreq(MY_FLOAT frequency);
void startBlowing(MY_FLOAT amplitude,MY_FLOAT rate);
void stopBlowing(MY_FLOAT rate);
virtual void noteOn(MY_FLOAT freq, MY_FLOAT amp);
virtual void noteOff(MY_FLOAT amp);
virtual MY_FLOAT tick();
virtual void controlChange(int number, MY_FLOAT value);
};
#endif

View File

@@ -1,41 +0,0 @@
/*******************************************/
/* DC Blocking Filter */
/* by Perry R. Cook, 1995-96 */
/* This guy is very helpful in, uh, */
/* blocking DC. Needed because a simple */
/* low-pass reflection filter allows DC */
/* to build up inside recursive */
/* structures. */
/*******************************************/
#include "DCBlock.h"
DCBlock :: DCBlock()
{
inputs = (MY_FLOAT *) malloc(MY_FLOAT_SIZE);
outputs = (MY_FLOAT *) malloc(MY_FLOAT_SIZE);
this->clear();
}
DCBlock :: ~DCBlock()
{
free(inputs);
free(outputs);
}
void DCBlock :: clear()
{
outputs[0] = (MY_FLOAT) 0.0;
inputs[0] = (MY_FLOAT) 0.0;
lastOutput = (MY_FLOAT) 0.0;
}
MY_FLOAT DCBlock :: tick(MY_FLOAT sample)
{
outputs[0] = sample - inputs[0] + ((MY_FLOAT) 0.99 * outputs[0]);
inputs[0] = sample;
lastOutput = outputs[0];
return lastOutput;
}

View File

@@ -1,25 +0,0 @@
/*******************************************/
/* DC Blocking Filter */
/* by Perry R. Cook, 1995-96 */
/* This guy is very helpful in, uh, */
/* blocking DC. Needed because a simple */
/* low-pass reflection filter allows DC */
/* to build up inside recursive */
/* structures. */
/*******************************************/
#if !defined(__DCBlock_h)
#define __DCBlock_h
#include "Filter.h"
class DCBlock : public Filter
{
public:
DCBlock();
~DCBlock();
void clear();
MY_FLOAT tick(MY_FLOAT sample);
};
#endif

View File

@@ -1,105 +0,0 @@
/*******************************************/
/* */
/* AllPass Interpolating Delay Line */
/* Object by Perry R. Cook 1995-96 */
/* This one uses a delay line of maximum */
/* length specified on creation, and */
/* interpolates fractional length using */
/* an all-pass filter. This version is */
/* more efficient for computing static */
/* length delay lines (alpha and coeff */
/* are computed only when the length */
/* is set, there probably is a more */
/* efficient computational form if alpha */
/* is changed often (each sample)). */
/* */
/*******************************************/
#include "DLineA.h"
DLineA :: DLineA(long max_length)
{
long i;
length = max_length;
inputs = (MY_FLOAT *) malloc(length * MY_FLOAT_SIZE);
for (i=0;i<length;i++) inputs[i] = (MY_FLOAT) 0;
this->clear();
inPoint = 0;
outPoint = length >> 1;
}
DLineA :: ~DLineA()
{
free(inputs);
}
void DLineA :: clear()
{
long i;
for (i=0;i<length;i++) inputs[i] = (MY_FLOAT) 0.0;
lastIn = (MY_FLOAT) 0;
lastOutput = (MY_FLOAT) 0;
}
void DLineA :: setDelay(MY_FLOAT lag)
{
MY_FLOAT outputPointer;
outputPointer = inPoint - lag + 2; /* outPoint chases inpoint */
/* + 2 for interp and other */
while (outputPointer<0)
outputPointer += length; /* modulo table length */
outPoint = (long) outputPointer; /* Integer part of delay */
alpha = (MY_FLOAT) 1.0 + outPoint - outputPointer; /* fractional part of delay */
if (alpha<0.1) {
outputPointer += (MY_FLOAT) 1.0;/* Hack to avoid pole/zero */
outPoint += 1; /* cancellation. Keeps allpass */
alpha += (MY_FLOAT) 1.0; /* delay in range of .1 to 1.1 */
}
coeff = ((MY_FLOAT) 1.0 - alpha) /
((MY_FLOAT) 1.0 + alpha); /* coefficient for all pass */
}
MY_FLOAT DLineA :: tick(MY_FLOAT sample) /* Take sample, yield sample */
{
MY_FLOAT temp;
inputs[inPoint++] = sample; /* Write input sample */
if (inPoint == length) /* Increment input pointer */
inPoint -= length; /* modulo length */
temp = inputs[outPoint++]; /* filter input */
if (outPoint == length) /* Increment output pointer */
outPoint -= length; /* modulo length */
lastOutput = -coeff * lastOutput; /* delayed output */
lastOutput += lastIn + (coeff * temp); /* input + delayed Input */
lastIn = temp;
return lastOutput; /* save output and return */
}
/************ Test Main Program *****************/
/*
void main()
{
DLineA delay(140);
FILE *fd;
MY_FLOAT temp;
short data;
long i;
fd = fopen("test.raw","wb");
delay.setDelay(128);
for (i=0;i<4096;i++) {
if (i%256 != 0) temp = 0.0; else temp = 1.0;
data = (temp + delay.tick(temp)) * 16000.0;
fwrite(&data,2,1,fd);
}
delay.setDelay(64.5);
for (i=0;i<4096;i++) {
if (i%256 != 0) temp = 0.0; else temp = 1.0;
data = (temp + delay.tick(temp)) * 16000.0;
fwrite(&data,2,1,fd);
}
fclose(fd);
}
*/

View File

@@ -1,41 +0,0 @@
/*******************************************/
/* */
/* AllPass Interpolating Delay Line */
/* Object by Perry R. Cook 1995-96 */
/* This one uses a delay line of maximum */
/* length specified on creation, and */
/* interpolates fractional length using */
/* an all-pass filter. This version is */
/* more efficient for computing static */
/* length delay lines (alpha and coeff */
/* are computed only when the length */
/* is set, there probably is a more */
/* efficient computational form if alpha */
/* is changed often (each sample)). */
/* */
/*******************************************/
#if !defined(__DLineA_h)
#define __DLineA_h
#include "Filter.h"
class DLineA : public Filter
{
protected:
long inPoint;
long outPoint;
long length;
MY_FLOAT alpha;
MY_FLOAT coeff;
MY_FLOAT lastIn;
public:
DLineA(long max_length);
~DLineA();
void clear();
void setDelay(MY_FLOAT length);
MY_FLOAT tick(MY_FLOAT sample);
};
#endif

View File

@@ -1,90 +0,0 @@
/*******************************************/
/* Linearly Interpolating Delay Line */
/* Object by Perry R. Cook 1995-96 */
/* This one uses a delay line of maximum */
/* length specified on creation, and */
/* linearly interpolates fractional */
/* length. It is designed to be more */
/* efficient if the delay length is not */
/* changed very often. */
/*******************************************/
#include "DLineL.h"
DLineL :: DLineL(long max_length)
{
length = max_length;
inputs = (MY_FLOAT *) malloc(length * MY_FLOAT_SIZE);
this->clear();
outPoint = 0;
inPoint = length >> 1;
}
DLineL :: ~DLineL()
{
free(inputs);
}
void DLineL :: clear()
{
long i;
for (i=0;i<length;i++) inputs[i] = (MY_FLOAT) 0.0;
lastOutput = (MY_FLOAT) 0;
}
void DLineL :: setDelay(MY_FLOAT lag)
{
MY_FLOAT outputPointer;
outputPointer = inPoint - lag; /* read chases write, add 1 for interp. */
while (outputPointer<0)
outputPointer += length; /* modulo maximum length */
outPoint = (long) outputPointer; /* integer part */
alpha = outputPointer - outPoint; /* fractional part */
omAlpha = (MY_FLOAT) 1.0 - alpha; /* 1.0 - fractional part (more efficient) */
}
MY_FLOAT DLineL :: tick(MY_FLOAT sample) /* Take one, yield one */
{
inputs[inPoint++] = sample; /* Input next sample */
if (inPoint == length) /* Check for end condition */
inPoint -= length;
lastOutput = inputs[outPoint++] * omAlpha; /* first 1/2 of interpolation */
if (outPoint<length) { /* Check for end condition */
lastOutput += inputs[outPoint] * alpha; /* second 1/2 of interpolation */
}
else { /* if at end . . . */
lastOutput += inputs[0] * alpha; /* second 1/2 of interpolation */
outPoint -= length;
}
return lastOutput;
}
/************ Test Main Program *****************/
/*
void main()
{
DLineL delay(140);
FILE *fd;
MY_FLOAT temp;
short data;
long i;
fd = fopen("test.raw","wb");
delay.setDelay(128);
for (i=0;i<4096;i++) {
if (i%256 != 0) temp = 0.0; else temp = 1.0;
data = (temp + delay.tick(temp)) * 16000.0;
fwrite(&data,2,1,fd);
}
delay.setDelay(64.5);
for (i=0;i<4096;i++) {
if (i%256 != 0) temp = 0.0; else temp = 1.0;
data = (temp + delay.tick(temp)) * 16000.0;
fwrite(&data,2,1,fd);
}
fclose(fd);
}
*/

View File

@@ -1,33 +0,0 @@
/*******************************************/
/* Linearly Interpolating Delay Line */
/* Object by Perry R. Cook 1995-96 */
/* This one uses a delay line of maximum */
/* length specified on creation, and */
/* linearly interpolates fractional */
/* length. It is designed to be more */
/* efficient if the delay length is not */
/* changed very often. */
/*******************************************/
#if !defined(__DLineL_h)
#define __DLineL_h
#include "Filter.h"
class DLineL : public Filter
{
protected:
long inPoint;
long outPoint;
long length;
MY_FLOAT alpha;
MY_FLOAT omAlpha;
public:
DLineL(long max_length);
~DLineL();
void clear();
void setDelay(MY_FLOAT length);
MY_FLOAT tick(MY_FLOAT sample);
};
#endif

View File

@@ -1,80 +0,0 @@
/*******************************************/
/* Non-Interpolating Delay Line */
/* Object by Perry R. Cook 1995-96 */
/* This one uses a delay line of maximum */
/* length specified on creation. A non- */
/* interpolating delay line should be */
/* used in non-time varying (reverb) or */
/* non-critical (????) applications. */
/*******************************************/
#include "DLineN.h"
DLineN :: DLineN(long max_length)
{
length = max_length;
inputs = (MY_FLOAT *) malloc(length * MY_FLOAT_SIZE);
this->clear();
this->setDelay(length * (MY_FLOAT) 0.5);
inPoint = 0;
outPoint = 0;
}
DLineN :: ~DLineN()
{
free(inputs);
}
void DLineN :: clear()
{
long i;
for (i=0;i<length;i++) inputs[i] = (MY_FLOAT) 0.0;
lastOutput = (MY_FLOAT) 0;
}
void DLineN :: setDelay(MY_FLOAT lag)
{
outPoint = inPoint - (long) lag; /* read chases write */
while (outPoint<0) outPoint += length; /* modulo maximum length */
}
MY_FLOAT DLineN :: tick(MY_FLOAT sample) /* Take one, yield one */
{
inputs[inPoint++] = sample; /* Input next sample */
if (inPoint == length) /* Check for end condition */
inPoint -= length;
lastOutput = inputs[outPoint++]; // first 1/2 of interpolation */
if (outPoint>=length) { // Check for end condition */
outPoint -= length;
}
return lastOutput;
}
/************ Test Main Program *****************/
/*
void main()
{
DLineN delay(140);
FILE *fd;
MY_FLOAT temp;
short data;
long i;
fd = fopen("test.raw","wb");
delay.setDelay(128);
for (i=0;i<4096;i++) {
if (i%256 != 0) temp = 0.0; else temp = 1.0;
data = (temp + delay.tick(temp)) * 16000.0;
fwrite(&data,2,1,fd);
}
delay.setDelay(64.5);
for (i=0;i<4096;i++) {
if (i%256 != 0) temp = 0.0; else temp = 1.0;
data = (temp + delay.tick(temp)) * 16000.0;
fwrite(&data,2,1,fd);
}
fclose(fd);
}
*/

View File

@@ -1,31 +0,0 @@
/*******************************************/
/* Non-Interpolating Delay Line */
/* Object by Perry R. Cook 1995-96 */
/* This one uses a delay line of maximum */
/* length specified on creation. A non- */
/* interpolating delay line should be */
/* used in non-time varying (reverb) or */
/* non-critical (????) applications. */
/*******************************************/
#if !defined(__DLineN_h)
#define __DLineN_h
#include "Filter.h"
class DLineN : public Filter
{
protected:
long inPoint;
long outPoint;
long length;
public:
DLineN(long max_length);
~DLineN();
void clear();
void setDelay(MY_FLOAT length);
MY_FLOAT tick(MY_FLOAT sample);
};
#endif

View File

@@ -1,183 +0,0 @@
/*******************************************/
/* Master Class for Drum Synthesizer */
/* by Perry R. Cook, 1995-96 */
/* This instrument contains a bunch of */
/* NI1sWave objects (Non-Interpolating, */
/* 1 shot players), run through a bunch */
/* of one-pole filters. You can specify */
/* the maximum Polyphony (maximum number */
/* of simultaneous voices) in a #define */
/* in the .h file. */
/*******************************************/
#include "DrumSynt.h"
#include <string.h>
/* Not really General MIDI yet. Coming soon. */
unsigned char genMIDIMap[128] = { 0,0,0,0,0,0,0,0, // 0-7
0,0,0,0,0,0,0,0, // 8-15
0,0,0,0,0,0,0,0, // 16-23
0,0,0,0,0,0,0,0, // 24-31
0,0,0,0,1,0,2,0, // 32-39
2,3,6,3,6,4,7,4, // 40-47
5,8,5,0,0,0,10,0, // 48-55
9,0,0,0,0,0,0,0, // 56-63
0,0,0,0,0,0,0,0, // 64-71
0,0,0,0,0,0,0,0, // 72-79
0,0,0,0,0,0,0,0, // 80-87
0,0,0,0,0,0,0,0, // 88-95
0,0,0,0,0,0,0,0, // 96-103
0,0,0,0,0,0,0,0, // 104-111
0,0,0,0,0,0,0,0, // 112-119
0,0,0,0,0,0,0,0}; // 120-127
char waveNames[DRUM_NUMWAVES][16] = {
"dope.raw",
"bassdrum.raw",
"snardrum.raw",
"tomlowdr.raw",
"tommiddr.raw",
"tomhidrm.raw",
"hihatcym.raw",
"ridecymb.raw",
"crashcym.raw",
"cowbell1.raw",
"tambourn.raw"
};
DrumSynt :: DrumSynt() : Instrmnt()
{
int i;
for (i=0;i<DRUM_POLYPHONY;i++) {
filters[i] = new OnePole;
sounding[i] = -1;
}
numSounding = 0; /* This counts the number */
/* of sounding voices */
}
void DrumSynt :: noteOn(MY_FLOAT freq, MY_FLOAT amp)
{
int i,notDone;
int noteNum;
int vel;
char tempString[64];
RawWvIn *tempWv;
OnePole *tempFilt;
noteNum = (int) ((12*log(freq/220)/log(2)) + 57.01); // Yes I know, this is tres kludgey
vel = (int) (amp * 127);
#if defined(_debug_)
printf("NoteOn: %s vel=%i\n",waveNames[genMIDIMap[noteNum]],vel);
#endif
notDone = -1;
for (i=0;i<DRUM_POLYPHONY;i++) { /* Check first to see */
if (sounding[i] == noteNum) notDone = i; /* if there's already */
} /* one like this sounding */
if (notDone<0) { /* If not, then */
if (numSounding == DRUM_POLYPHONY) { /* If we're already */
delete waves[0]; /* at max polyphony, */
filters[0]->clear(); /* then */
tempWv = waves[0];
tempFilt = filters[0];
for (i=0;i<DRUM_POLYPHONY-1;i++) { /* preempt oldest */
waves[i] = waves[i+1]; /* voice and */
filters[i] = filters[i+1]; /* ripple all down */
}
waves[DRUM_POLYPHONY-1] = tempWv;
filters[DRUM_POLYPHONY-1] = tempFilt;
}
else {
numSounding += 1; /* otherwise just add one */
}
sounding[numSounding-1] = noteNum; /* allocate new wave */
strcpy(tempString,"rawwaves/");
strcat(tempString,waveNames[genMIDIMap[noteNum]]);
waves[numSounding-1] = new RawWvIn(tempString);
waves[numSounding-1]->normalize((MY_FLOAT) 0.2);
filters[numSounding-1]->setPole((MY_FLOAT) 0.999 - ((MY_FLOAT) vel * NORM_7 * 0.6));
filters[numSounding-1]->setGain(vel / (MY_FLOAT) 128.0);
}
else {
waves[notDone]->reset();
filters[notDone]->setPole((MY_FLOAT) 0.999 - ((MY_FLOAT) vel * NORM_7 * 0.6));
filters[notDone]->setGain(vel / (MY_FLOAT) 128.0);
}
#if defined(_debug_)
printf("Number Sounding = %i\n",numSounding);
for (i=0;i<numSounding;i++) printf(" %i ",sounding[i]);
printf("\n");
#endif
}
MY_FLOAT DrumSynt :: tick()
{
int i, j, notDone;
MY_FLOAT output;
OnePole *tempFilt;
i = 0;
notDone = 1;
output = (MY_FLOAT) 0.0;
if (numSounding == 0) notDone = 0;
while (notDone && (i < numSounding)) {
output += filters[i]->tick(waves[i]->lastOut());
if (waves[i]->informTick() == 1) {
#if defined(_debug_)
printf("Wave %i %i down here\n",i,sounding[i]);
#endif
delete waves[i];
tempFilt = filters[i];
for (j=i;j<numSounding-1;j++) {
sounding[j] = sounding[j+1];
waves[j] = waves[j+1];
filters[j] = filters[j+1];
}
filters[j] = tempFilt;
filters[j]->clear();
sounding[j] = -1;
numSounding -= 1;
if (numSounding == 0) notDone = 0;
i -= 1;
}
i++;
}
return output * 2;
}
/************** Test Main Program *********************/
/*
#include "miditabl.h"
#include "RawWvOut.h"
#include "Reverb.h"
#include "Noise.h"
void main()
{
long i,j;
DrumSynt instrument;
RawWvOut output("test.snd");
Reverb reverb((MY_FLOAT) 2137);
Noise noise;
for (j=0;j<100;j++) {
i = (int) (fabs(noise.tick()) * DRUM_NUMWAVES);
instrument.noteOn(i,1.0);
for (i=0;i<2000;i++) output.tick(reverb.tick(instrument.tick()));
}
for (i=0;i<22000;i++) output.tick(reverb.tick(instrument.tick()));
}
*/

View File

@@ -1,37 +0,0 @@
/*******************************************/
/* Master Class for Drum Synthesizer */
/* by Perry R. Cook, 1995-96 */
/* This instrument contains a bunch of */
/* RawWvIn objects (Non-Interpolating, */
/* 1 shot players), run through a bunch */
/* of one-pole filters. You can specify */
/* the maximum Polyphony (maximum number */
/* of simultaneous voices) in a #define */
/* in the .h file. */
/*******************************************/
#if !defined(__DrumSynt_h)
#define __DrumSynt_h
#include "Instrmnt.h"
#include "RawWvIn.h"
#include "OnePole.h"
#define DRUM_NUMWAVES 11
#define DRUM_POLYPHONY 4
class DrumSynt : public Instrmnt
{
protected:
RawWvIn *waves[DRUM_POLYPHONY];
OnePole *filters[DRUM_POLYPHONY];
int sounding[DRUM_POLYPHONY];
int numSounding;
public:
DrumSynt();
/* ~DrumSynt(); */
virtual void noteOn(MY_FLOAT freq, MY_FLOAT amp);
virtual MY_FLOAT tick();
};
#endif

View File

@@ -1,121 +0,0 @@
/*******************************************/
/* Envelope Class, Perry R. Cook, 1995-96 */
/* This is the base class for envelopes. */
/* This one is capable of ramping state */
/* from where it is to a target value by */
/* a rate. It also responds to simple */
/* KeyOn and KeyOff messages, ramping to */
/* 1.0 on keyon and to 0.0 on keyoff. */
/* There are two tick (update value) */
/* methods, one returns the value, and */
/* other returns 0 if the envelope is at */
/* the target value (the state bit). */
/*******************************************/
#include "Envelope.h"
Envelope :: Envelope() : Object()
{
target = (MY_FLOAT) 0.0;
value = (MY_FLOAT) 0.0;
rate = (MY_FLOAT) 0.001;
state = 0;
}
Envelope :: ~Envelope()
{
}
void Envelope :: keyOn()
{
target = (MY_FLOAT) 1.0;
if (value != target) state = 1;
}
void Envelope :: keyOff()
{
target = (MY_FLOAT) 0.0;
if (value != target) state = 1;
}
void Envelope :: setRate(MY_FLOAT aRate)
{
if (aRate < 0.0) {
printf("negative rates not allowed!!, correcting\n");
rate = -aRate;
}
else rate = aRate;
}
void Envelope :: setTime(MY_FLOAT aTime)
{
if (aTime < 0.0) {
printf("negative times not allowed!!, correcting\n");
rate = ONE_OVER_SRATE / -aTime ;
}
else rate = ONE_OVER_SRATE / aTime ;
}
void Envelope :: setTarget(MY_FLOAT aTarget)
{
target = aTarget;
if (value != target) state = 1;
}
void Envelope :: setValue(MY_FLOAT aValue)
{
state = 0;
target = aValue;
value = aValue;
}
MY_FLOAT Envelope :: tick()
{
if (state) {
if (target > value) {
value += rate;
if (value >= target) {
value = target;
state = 0;
}
}
else {
value -= rate;
if (value <= target) {
value = target;
state = 0;
}
}
}
return value;
}
int Envelope :: informTick()
{
this->tick();
return state;
}
MY_FLOAT Envelope :: lastOut()
{
return value;
}
/************ Test Main ************************/
/*
void main()
{
long i;
Envelope test;
test.setRate(0.15);
test.keyOn();
for (i=0;i<10;i++) printf("%lf\n",test.tick());
test.setRate(0.1);
test.setTarget(0.5);
while (test.informTick()) printf("%lf\n",test.lastOut());
test.setRate(0.05);
test.keyOff();
while(test.informTick()) printf("%lf\n",test.lastOut());
}
*/

View File

@@ -1,41 +0,0 @@
/*******************************************/
/* Envelope Class, Perry R. Cook, 1995-96 */
/* This is the base class for envelopes. */
/* This one is capable of ramping state */
/* from where it is to a target value by */
/* a rate. It also responds to simple */
/* KeyOn and KeyOff messages, ramping to */
/* 1.0 on keyon and to 0.0 on keyoff. */
/* There are two tick (update value) */
/* methods, one returns the value, and */
/* other returns 0 if the envelope is at */
/* the target value (the state bit). */
/*******************************************/
#if !defined(__Envelope_h)
#define __Envelope_h
#include "Object.h"
class Envelope : public Object
{
protected:
MY_FLOAT value;
MY_FLOAT target;
MY_FLOAT rate;
int state;
public:
Envelope();
virtual ~Envelope();
void keyOn();
void keyOff();
void setRate(MY_FLOAT aRate);
void setTime(MY_FLOAT aTime);
void setTarget(MY_FLOAT aTarget);
void setValue(MY_FLOAT aValue);
MY_FLOAT tick();
int informTick();
MY_FLOAT lastOut();
};
#endif

View File

@@ -1,56 +0,0 @@
/******************************************/
/* Algorithm 3 (TX81Z) Subclass of */
/* 4 Operator FM Synth */
/* by Perry R. Cook, 1995-96 */
/* */
/* Alg 3 is : 4--\ */
/* 3-->2-- + -->1-->Out */
/* */
/* Controls: control1 = total mod index */
/* control2 = crossfade of two */
/* modulators */
/* control3 = LFO speed */
/* modWheel = LFO amount */
/* */
/******************************************/
#include "FM4Alg3.h"
FM4Alg3 :: FM4Alg3() : FM4Op()
{
/* We still don't make the waves here yet, because */
/* we still don't know what they will be. */
}
FM4Alg3 :: ~FM4Alg3()
{
}
MY_FLOAT FM4Alg3 :: tick()
{
MY_FLOAT temp;
temp = vibWave->tick() * modDepth * (MY_FLOAT) 0.2;
waves[0]->setFreq(baseFreq * ((MY_FLOAT) 1.0 + temp) * ratios[0]);
waves[1]->setFreq(baseFreq * ((MY_FLOAT) 1.0 + temp) * ratios[1]);
waves[2]->setFreq(baseFreq * ((MY_FLOAT) 1.0 + temp) * ratios[2]);
waves[3]->setFreq(baseFreq * ((MY_FLOAT) 1.0 + temp) * ratios[3]);
temp = gains[2] * adsr[2]->tick() * waves[2]->tick();
waves[1]->addPhaseOffset(temp);
waves[3]->addPhaseOffset(twozero->lastOut());
temp = ((MY_FLOAT) 1.0 - (control2 * (MY_FLOAT) 0.5)) *
gains[3] * adsr[3]->tick() * waves[3]->tick();
twozero->tick(temp);
temp += control2 * (MY_FLOAT) 0.5 * gains[1] * adsr[1]->tick() * waves[1]->tick();
temp = temp * control1;
waves[0]->addPhaseOffset(temp);
temp = gains[0] * adsr[0]->tick() * waves[0]->tick();
lastOutput = temp * (MY_FLOAT) 0.5;
return lastOutput;
}

View File

@@ -1,30 +0,0 @@
/******************************************/
/* Algorithm 3 (TX81Z) Subclass of */
/* 4 Operator FM Synth */
/* by Perry R. Cook, 1995-96 */
/* */
/* Alg 3 is : 4--\ */
/* 3-->2-- + -->1-->Out */
/* */
/* Controls: control1 = total mod index */
/* control2 = crossfade of two */
/* modulators */
/* control3 = LFO speed */
/* modWheel = LFO amount */
/* */
/******************************************/
#if !defined(__FM4Alg3_h)
#define __FM4Alg3_h
#include "FM4Op.h"
class FM4Alg3 : public FM4Op
{
public:
FM4Alg3();
virtual ~FM4Alg3();
MY_FLOAT tick();
};
#endif

View File

@@ -1,53 +0,0 @@
/******************************************/
/* Algorithm 4 (TX81Z) Subclass of */
/* 4 Operator FM Synth */
/* by Perry R. Cook, 1995-96 */
/* */
/* Alg 4 is : 4->3--\ */
/* 2-- + -->1-->Out */
/* */
/* Controls: control1 = total mod index */
/* control2 = crossfade of two */
/* modulators */
/* control3 = LFO speed */
/* modWheel = LFO amount */
/* */
/******************************************/
#include "FM4Alg4.h"
FM4Alg4 :: FM4Alg4() : FM4Op()
{
/* We still don't make the waves here yet, because */
/* we still don't know what they will be. */
}
FM4Alg4 :: ~FM4Alg4()
{
}
MY_FLOAT FM4Alg4 :: tick()
{
MY_FLOAT temp;
temp = vibWave->tick() * modDepth * (MY_FLOAT) 0.2;
waves[0]->setFreq(baseFreq * ((MY_FLOAT) 1.0 + temp) * ratios[0]);
waves[1]->setFreq(baseFreq * ((MY_FLOAT) 1.0 + temp) * ratios[1]);
waves[2]->setFreq(baseFreq * ((MY_FLOAT) 1.0 + temp) * ratios[2]);
waves[3]->setFreq(baseFreq * ((MY_FLOAT) 1.0 + temp) * ratios[3]);
waves[3]->addPhaseOffset(twozero->lastOut());
temp = gains[3] * adsr[3]->tick() * waves[3]->tick();
twozero->tick(temp);
waves[2]->addPhaseOffset(temp);
temp = ((MY_FLOAT) 1.0 - (control2 * (MY_FLOAT) 0.5)) *
gains[2] * adsr[2]->tick() * waves[2]->tick();
temp += control2 * (MY_FLOAT) 0.5 * gains[1] * adsr[1]->tick() * waves[1]->tick();
temp = temp * control1;
waves[0]->addPhaseOffset(temp);
temp = gains[0] * adsr[0]->tick() * waves[0]->tick();
lastOutput = temp * (MY_FLOAT) 0.5;
return lastOutput;
}

View File

@@ -1,30 +0,0 @@
/******************************************/
/* Algorithm 4 (TX81Z) Subclass of */
/* 4 Operator FM Synth */
/* by Perry R. Cook, 1995-96 */
/* */
/* Alg 4 is : 4->3--\ */
/* 2-- + -->1-->Out */
/* */
/* Controls: control1 = total mod index */
/* control2 = crossfade of two */
/* modulators */
/* control3 = LFO speed */
/* modWheel = LFO amount */
/* */
/******************************************/
#if !defined(__FM4Alg4_h)
#define __FM4Alg4_h
#include "FM4Op.h"
class FM4Alg4 : public FM4Op
{
public:
FM4Alg4();
virtual ~FM4Alg4();
MY_FLOAT tick();
};
#endif

View File

@@ -1,53 +0,0 @@
/******************************************/
/* Algorithm 5 (TX81Z) Subclass of */
/* 4 Operator FM Synth */
/* by Perry R. Cook, 1995-96 */
/* This connection topology is 2 simple */
/* FM Pairs summed together, like: */
/* */
/* Alg 5 is : 4->3--\ */
/* + --> Out */
/* 2->1--/ */
/* */
/* Controls: control1 = mod index 1 */
/* control2 = crossfade of two */
/* outputs */
/* control3 = LFO speed */
/* modWheel = LFO amount */
/* */
/******************************************/
#include "FM4Alg5.h"
FM4Alg5 :: FM4Alg5() : FM4Op()
{
/* We still don't make the waves here yet, because */
/* we still don't know what they will be. */
}
FM4Alg5 :: ~FM4Alg5()
{
}
MY_FLOAT FM4Alg5 :: tick()
{
MY_FLOAT temp,temp2;
temp = gains[1] * adsr[1]->tick() * waves[1]->tick();
temp = temp * control1;
waves[0]->addPhaseOffset(temp);
waves[3]->addPhaseOffset(twozero->lastOut());
temp = gains[3] * adsr[3]->tick() * waves[3]->tick();
twozero->tick(temp);
waves[2]->addPhaseOffset(temp);
temp = ((MY_FLOAT) 1.0 - (control2 * (MY_FLOAT) 0.5)) *
gains[0] * adsr[0]->tick() * waves[0]->tick();
temp += control2 * (MY_FLOAT) 0.5 * gains[2] * adsr[2]->tick() * waves[2]->tick();
temp2 = vibWave->tick() * modDepth; /* Calculate amplitude mod */
temp = temp * ((MY_FLOAT) 1.0 + temp2); /* and apply it to output */
lastOutput = temp * (MY_FLOAT) 0.5;
return lastOutput;
}

View File

@@ -1,33 +0,0 @@
/******************************************/
/* Algorithm 5 (TX81Z) Subclass of */
/* 4 Operator FM Synth */
/* by Perry R. Cook, 1995-96 */
/* This connection topology is 2 simple */
/* FM Pairs summed together, like: */
/* */
/* 1 -> 2 -\ */
/* +-> Out */
/* 3 -> 4 -/ */
/* */
/* Controls: control1 = mod index 1 */
/* control2 = crossfade of two */
/* outputs */
/* control3 = LFO speed */
/* modWheel = LFO amount */
/* */
/******************************************/
#if !defined(__FM4Alg5_h)
#define __FM4Alg5_h
#include "FM4Op.h"
class FM4Alg5 : public FM4Op
{
public:
FM4Alg5();
virtual ~FM4Alg5();
MY_FLOAT tick();
};
#endif

View File

@@ -1,58 +0,0 @@
/******************************************/
/* Algorithm 6 (TX81Z) Subclass of */
/* 4 Operator FM Synth */
/* by Perry R. Cook, 1995-96 */
/* This connection topology is three */
/* Carriers and a common Modulator */
/* */
/* /->1 -\ */
/* 4-|-->2 - +-> Out */
/* \->3 -/ */
/* */
/* Controls: control1 = vowel */
/* control2 = spectral tilt */
/* control3 = LFO speed */
/* modWheel = LFO amount */
/* */
/******************************************/
#include "FM4Alg6.h"
FM4Alg6 :: FM4Alg6() : FM4Op()
{
/* We still don't make the waves here yet, because */
/* we still don't know what they will be. */
}
FM4Alg6 :: ~FM4Alg6()
{
}
MY_FLOAT FM4Alg6 :: tick()
{
MY_FLOAT temp,temp2;
temp = gains[3] * adsr[3]->tick() * waves[3]->tick();
temp2 = vibWave->tick() * modDepth * (MY_FLOAT) 0.1; /* Calculate frequency mod */
waves[0]->setFreq(baseFreq * ((MY_FLOAT) 1.0 + temp2) * ratios[0]);
waves[1]->setFreq(baseFreq * ((MY_FLOAT) 1.0 + temp2) * ratios[1]);
waves[2]->setFreq(baseFreq * ((MY_FLOAT) 1.0 + temp2) * ratios[2]);
waves[3]->setFreq(baseFreq * ((MY_FLOAT) 1.0 + temp2) * ratios[3]);
waves[0]->addPhaseOffset(temp * mods[0]);
waves[1]->addPhaseOffset(temp * mods[1]);
waves[2]->addPhaseOffset(temp * mods[2]);
waves[3]->addPhaseOffset(twozero->lastOut());
twozero->tick(temp);
temp = gains[0] * tilt[0] * adsr[0]->tick() * waves[0]->tick();
temp += gains[1] * tilt[1] * adsr[1]->tick() * waves[1]->tick();
temp += gains[2] * tilt[2] * adsr[2]->tick() * waves[2]->tick();
return temp * (MY_FLOAT) 0.33;
}
void FM4Alg6 :: controlChange(int number, MY_FLOAT value)
{
}

View File

@@ -1,36 +0,0 @@
/******************************************/
/* Algorithm 6 (TX81Z) Subclass of */
/* 4 Operator FM Synth */
/* by Perry R. Cook, 1995-96 */
/* This connection topology is three */
/* Carriers and a common Modulator */
/* */
/* /->1 -\ */
/* 4-|-->2 - +-> Out */
/* \->3 -/ */
/* */
/* Controls: control1 = vowel */
/* control2 = spectral tilt */
/* control3 = LFO speed */
/* modWheel = LFO amount */
/* */
/******************************************/
#if !defined(__FM4Alg6_h)
#define __FM4Alg6_h
#include "FM4Op.h"
class FM4Alg6 : public FM4Op
{
protected:
MY_FLOAT tilt[3];
MY_FLOAT mods[3];
public:
FM4Alg6();
virtual ~FM4Alg6();
MY_FLOAT tick();
virtual void controlChange(int number, MY_FLOAT value);
};
#endif

View File

@@ -1,47 +0,0 @@
/******************************************/
/* Algorithm 8 (TX81Z) Subclass of */
/* 4 Operator FM Synth */
/* by Perry R. Cook, 1995-96 */
/* This connection topology is simple */
/* Additive Synthesis, like: */
/* */
/* 1 --. */
/* 2 -\| */
/* +-> Out */
/* 3 -/| */
/* 4 -- */
/* */
/* Controls: control1 = op4 (fb) gain */
/* control2 = op3 gain */
/* control3 = LFO speed */
/* modWheel = LFO amount */
/* */
/******************************************/
#include "FM4Alg8.h"
FM4Alg8 :: FM4Alg8() : FM4Op()
{
/* We still don't make the waves here yet, because */
/* we still don't know what they will be. */
}
FM4Alg8 :: ~FM4Alg8()
{
}
MY_FLOAT FM4Alg8 :: tick()
{
MY_FLOAT temp;
waves[3]->addPhaseOffset(twozero->lastOut());
temp = control1 * (MY_FLOAT) 2.0 * gains[3] * adsr[3]->tick() * waves[3]->tick();
twozero->tick(temp);
temp += control2 * (MY_FLOAT) 2.0 * gains[2] * adsr[2]->tick() * waves[2]->tick();
temp += gains[1] * adsr[1]->tick() * waves[1]->tick();
temp += gains[0] * adsr[0]->tick() * waves[0]->tick();
lastOutput = temp * (MY_FLOAT) 0.125;
return lastOutput;
}

View File

@@ -1,34 +0,0 @@
/******************************************/
/* Algorithm 8 (TX81Z) Subclass of */
/* 4 Operator FM Synth */
/* by Perry R. Cook, 1995-96 */
/* This connection topology is simple */
/* Additive Synthesis, like: */
/* */
/* 1 --. */
/* 2 -\| */
/* +-> Out */
/* 3 -/| */
/* 4 -- */
/* */
/* Controls: control1 = op4 (fb) gain */
/* control2 = op3 gain */
/* control3 = LFO speed */
/* modWheel = LFO amount */
/* */
/******************************************/
#if !defined(__FM4Alg8_h)
#define __FM4Alg8_h
#include "FM4Op.h"
class FM4Alg8 : public FM4Op
{
public:
FM4Alg8();
virtual ~FM4Alg8();
virtual MY_FLOAT tick();
};
#endif

180
FM4Op.cpp
View File

@@ -1,180 +0,0 @@
/*******************************************/
/* Master Class for 4 Operator FM Synth */
/* by Perry R. Cook, 1995-96 */
/* This instrument contains 4 waves, */
/* 4 adsr, and various state vars. */
/* */
/* The basic Chowning/Stanford FM patent */
/* expired April 1995, but there exist */
/* follow-on patents, mostly assigned to */
/* Yamaha. If you are of the type who */
/* should worry about this (making money) */
/* worry away. */
/* */
/*******************************************/
#include "FM4Op.h"
#include "SKINI11.msg"
FM4Op :: FM4Op()
{
int i;
MY_FLOAT temp;
MY_FLOAT tempCoeffs[2] = {(MY_FLOAT) 0.0, (MY_FLOAT) -1.0};
adsr[0] = new ADSR;
adsr[1] = new ADSR;
adsr[2] = new ADSR;
adsr[3] = new ADSR;
twozero = new TwoZero;
vibWave = new RawLoop("rawwaves/sinewave.raw");
vibWave->normalize();
vibWave->setFreq((MY_FLOAT) 6.0); /* should make this random?? */
modDepth = (MY_FLOAT) 0.0;
/* We don't make the waves here yet, because */
/* we don't know what they will be. */
baseFreq = (MY_FLOAT) 440.0;
ratios[0] = (MY_FLOAT) 1.0;
ratios[1] = (MY_FLOAT) 1.0;
ratios[2] = (MY_FLOAT) 1.0;
ratios[3] = (MY_FLOAT) 1.0;
gains[0] = (MY_FLOAT) 1.0;
gains[1] = (MY_FLOAT) 1.0;
gains[2] = (MY_FLOAT) 1.0;
gains[3] = (MY_FLOAT) 1.0;
twozero->setZeroCoeffs(tempCoeffs);
twozero->setGain((MY_FLOAT) 0.0);
control1 = (MY_FLOAT) 1.0;
control2 = (MY_FLOAT) 1.0;
temp = (MY_FLOAT) 1.0;
for (i=99;i>=0;i--) {
__FM4Op_gains[i] = temp;
temp *= (MY_FLOAT) 0.933033;
}
temp = (MY_FLOAT) 1.0;
for (i=15;i>=0;i--) {
__FM4Op_susLevels[i] = temp;
temp *= (MY_FLOAT) 0.707101;
}
temp = (MY_FLOAT) 8.498186;
for (i=0;i<32;i++) {
__FM4Op_attTimes[i] = temp;
temp *= (MY_FLOAT) 0.707101;
}
}
FM4Op :: ~FM4Op()
{
delete adsr[0];
delete adsr[1];
delete adsr[2];
delete adsr[3];
delete waves[0];
delete waves[1];
delete waves[2];
delete waves[3];
delete vibWave;
delete twozero;
}
void FM4Op :: loadWaves(char* wave1, char* wave2, char* wave3, char* wave4)
{
int i;
waves[0] = new RawLoop(wave1);
waves[1] = new RawLoop(wave2);
waves[2] = new RawLoop(wave3);
waves[3] = new RawLoop(wave4);
for (i=0;i<4;i++) {
waves[i]->normalize();
}
}
void FM4Op :: setFreq(MY_FLOAT frequency)
{
baseFreq = frequency;
waves[0]->setFreq(baseFreq * ratios[0]);
waves[1]->setFreq(baseFreq * ratios[1]);
waves[2]->setFreq(baseFreq * ratios[2]);
waves[3]->setFreq(baseFreq * ratios[3]);
}
void FM4Op :: setRatio(int whichOne, MY_FLOAT ratio)
{
ratios[whichOne] = ratio;
if (ratio>0.0)
waves[whichOne]->setFreq(baseFreq * ratio);
else
waves[whichOne]->setFreq(ratio);
}
void FM4Op :: setGain(int whichOne, MY_FLOAT gain)
{
gains[whichOne]=gain;
}
void FM4Op :: keyOn()
{
adsr[0]->keyOn();
adsr[1]->keyOn();
adsr[2]->keyOn();
adsr[3]->keyOn();
}
void FM4Op :: keyOff()
{
adsr[0]->keyOff();
adsr[1]->keyOff();
adsr[2]->keyOff();
adsr[3]->keyOff();
}
void FM4Op :: noteOff(MY_FLOAT amp)
{
this->keyOff();
#if defined(_debug_)
printf("FM4Op : NoteOff: Amp=%lf\n",amp);
#endif
}
void FM4Op :: setModulationSpeed(MY_FLOAT mSpeed)
{
vibWave->setFreq(mSpeed);
}
void FM4Op :: setModulationDepth(MY_FLOAT mDepth)
{
modDepth = mDepth;
}
void FM4Op :: setControl1(MY_FLOAT cVal)
{
control1 = cVal * (MY_FLOAT) 2.0;
}
void FM4Op :: setControl2(MY_FLOAT cVal)
{
control2 = cVal * (MY_FLOAT) 2.0;
}
void FM4Op :: controlChange(int number, MY_FLOAT value)
{
#if defined(_debug_)
printf("FM4Op : ControlChange: Number=%i Value=%f\n",number,value);
#endif
if (number == __SK_Breath_)
this->setControl1(value * NORM_7);
else if (number == __SK_FootControl_)
this->setControl2(value * NORM_7);
else if (number == __SK_ModFrequency_)
this->setModulationSpeed(value * NORM_7 * (MY_FLOAT) 12.0); /* 0 to 12 Hz */
else if (number == __SK_ModWheel_)
this->setModulationDepth(value * NORM_7);
else if (number == __SK_AfterTouch_Cont_) {
adsr[0]->setTarget(value * NORM_7);
adsr[1]->setTarget(value * NORM_7);
adsr[2]->setTarget(value * NORM_7);
adsr[3]->setTarget(value * NORM_7);
}
else {
printf("FM4Op : Undefined Control Number!!\n");
}
}

59
FM4Op.h
View File

@@ -1,59 +0,0 @@
/*******************************************/
/* Master Class for 4 Operator FM Synth */
/* by Perry R. Cook, 1995-96 */
/* This instrument contains an 4 waves, */
/* 4 envelopes, and various state vars. */
/* */
/* The basic Chowning/Stanford FM patent */
/* expired April 1995, but there exist */
/* follow-on patents, mostly assigned to */
/* Yamaha. If you are of the type who */
/* should worry about this (making money) */
/* worry away. */
/* */
/*******************************************/
#if !defined(__FM4Op_h)
#define __FM4Op_h
#include "Instrmnt.h"
#include "ADSR.h"
#include "RawLoop.h"
#include "TwoZero.h"
class FM4Op : public Instrmnt
{
protected:
ADSR *adsr[4];
RawLoop *waves[4];
RawLoop *vibWave;
TwoZero *twozero;
MY_FLOAT baseFreq;
MY_FLOAT ratios[4];
MY_FLOAT gains[4];
MY_FLOAT modDepth;
MY_FLOAT control1;
MY_FLOAT control2;
MY_FLOAT __FM4Op_gains[100];
MY_FLOAT __FM4Op_susLevels[16];
MY_FLOAT __FM4Op_attTimes[32];
public:
FM4Op();
virtual ~FM4Op();
void loadWaves(char* wave1, char* wave2, char* wave3, char* wave4);
void clear();
void setFreq(MY_FLOAT frequency);
void setRatio(int whichOne, MY_FLOAT ratio);
void setGain(int whichOne, MY_FLOAT gain);
void keyOn();
void keyOff();
void noteOff(MY_FLOAT amp);
/* There's no tick() method here, because that depends on the algorithm */
void setModulationSpeed(MY_FLOAT mSpeed);
void setModulationDepth(MY_FLOAT mDepth);
void setControl1(MY_FLOAT cVal);
void setControl2(MY_FLOAT cVal);
virtual void controlChange(int number, MY_FLOAT value);
};
#endif

View File

@@ -1,127 +0,0 @@
/******************************************/
/* Singing Voice Synthesis Subclass */
/* of Algorithm 6 (TX81Z) Subclass of */
/* 4 Operator FM Synth */
/* by Perry R. Cook, 1996 */
/******************************************/
#include "FMVoices.h"
#include "SKINI11.msg"
FMVoices :: FMVoices() : FM4Alg6()
{
this->loadWaves("rawwaves/sinewave.raw",
"rawwaves/sinewave.raw",
"rawwaves/sinewave.raw",
"rawwaves/sinewave.raw");
this->setRatio(0,(MY_FLOAT) 2.00);
this->setRatio(1,(MY_FLOAT) 4.00);
this->setRatio(2,(MY_FLOAT) 12.0);
this->setRatio(3,(MY_FLOAT) 1.00);
gains[3] = __FM4Op_gains[80];
adsr[0]->setAllTimes((MY_FLOAT) 0.050,(MY_FLOAT) 0.050,
__FM4Op_susLevels[15],(MY_FLOAT) 0.050);
adsr[1]->setAllTimes((MY_FLOAT) 0.050,(MY_FLOAT) 0.050,
__FM4Op_susLevels[15],(MY_FLOAT) 0.050);
adsr[2]->setAllTimes((MY_FLOAT) 0.050,(MY_FLOAT) 0.050,
__FM4Op_susLevels[15],(MY_FLOAT) 0.050);
adsr[3]->setAllTimes((MY_FLOAT) 0.010,(MY_FLOAT) 0.010,
__FM4Op_susLevels[15],(MY_FLOAT) 0.500);
twozero->setGain((MY_FLOAT) 0.0);
modDepth = (MY_FLOAT) 0.005;
currentVowel = 0;
tilt[0] = (MY_FLOAT) 1.0;
tilt[1] = (MY_FLOAT) 0.5;
tilt[2] = (MY_FLOAT) 0.2;
mods[0] = (MY_FLOAT) 1.0;
mods[1] = (MY_FLOAT) 1.1;
mods[2] = (MY_FLOAT) 1.1;
baseFreq = (MY_FLOAT) 110.0;
this->setFreq((MY_FLOAT) 110.0);
}
/* #include "phonTabl.h" */
extern double phonGains[32][2];
extern double phonParams[32][4][3];
extern char phonemes[32][4];
void FMVoices :: setFreq(MY_FLOAT frequency)
{
MY_FLOAT temp,temp2;
int tempi,tempi2;
if (currentVowel < 16) {
tempi2 = currentVowel;
temp2 = (MY_FLOAT) 0.9;
}
else if (currentVowel < 32) {
tempi2 = currentVowel - 16;
temp2 = (MY_FLOAT) 1.0;
}
else if (currentVowel < 48) {
tempi2 = currentVowel - 32;
temp2 = (MY_FLOAT) 1.1;
}
else if (currentVowel <= 64) {
tempi2 = currentVowel - 48;
temp2 = (MY_FLOAT) 1.2;
}
baseFreq = frequency;
temp = (temp2 * (MY_FLOAT) phonParams[tempi2][0][0] / baseFreq) + (MY_FLOAT) 0.5;
tempi = (int) temp;
this->setRatio(0,(MY_FLOAT) tempi);
temp = (temp2 * (MY_FLOAT) phonParams[tempi2][1][0] / baseFreq) + (MY_FLOAT) 0.5;
tempi = (int) temp;
this->setRatio(1,(MY_FLOAT) tempi);
temp = (temp2 * (MY_FLOAT) phonParams[tempi2][2][0] / baseFreq) + (MY_FLOAT) 0.5;
tempi = (int) temp;
this->setRatio(2,(MY_FLOAT) tempi);
gains[0] = (MY_FLOAT) 1.0; // pow(10.0,phonParams[tempi2][0][2] * 0.05);
gains[1] = (MY_FLOAT) 1.0; // pow(10.0,phonParams[tempi2][1][2] * 0.05);
gains[2] = (MY_FLOAT) 1.0; // pow(10.0,phonParams[tempi2][2][2] * 0.05);
}
void FMVoices :: noteOn(MY_FLOAT freq, MY_FLOAT amp)
{
this->setFreq(freq);
tilt[0] = amp;
tilt[1] = amp * amp;
tilt[2] = amp * amp * amp;
this->keyOn();
#if defined(_debug_)
printf("FMVoices : NoteOn: Freq=%lf Amp=%lf\n",freq,amp);
#endif
}
void FMVoices :: controlChange(int number, MY_FLOAT value)
{
MY_FLOAT temp;
int tempi;
#if defined(_debug_)
printf("FM4Op : ControlChange: Number=%i Value=%f\n",number,value);
#endif
if (number == __SK_Breath_)
gains[3] = __FM4Op_gains[(int) (value * 0.78125)];
else if (number == __SK_FootControl_) {
tempi = (int) (value / 2);
currentVowel = tempi;
this->setFreq(baseFreq);
}
else if (number == __SK_ModFrequency_)
this->setModulationSpeed(value * NORM_7 * (MY_FLOAT) 12.0); /* 0 to 12 Hz */
else if (number == __SK_ModWheel_)
this->setModulationDepth(value * NORM_7);
else if (number == __SK_AfterTouch_Cont_) {
temp = value * NORM_7;
tilt[0] = temp;
tilt[1] = temp * temp;
tilt[2] = temp * temp * temp;
}
else {
printf("FM4Op : Undefined Control Number!!\n");
}
}

View File

@@ -1,24 +0,0 @@
/******************************************/
/* Singing Voice Synthesis Subclass */
/* of Algorithm 6 (TX81Z) Subclass of */
/* 4 Operator FM Synth */
/* by Perry R. Cook, 1996 */
/******************************************/
#if !defined(__FMVoices_h)
#define __FMVoices_h
#include "FM4Alg6.h"
class FMVoices : public FM4Alg6
{
protected:
int currentVowel;
public:
FMVoices();
virtual void setFreq(MY_FLOAT frequency);
virtual void noteOn(MY_FLOAT freq, MY_FLOAT amp);
virtual void controlChange(int number, MY_FLOAT value);
};
#endif

View File

@@ -1,24 +0,0 @@
/*******************************************/
/* Filter Class, by Perry R. Cook, 1995-96*/
/* This is the base class for all filters.*/
/* To me, most anything is a filter, but */
/* I'll be a little less general here, and*/
/* define a filter as something which has */
/* input(s), output(s), and gain. */
/*******************************************/
#include "Filter.h"
Filter :: Filter() : Object()
{
}
Filter :: ~Filter()
{
}
MY_FLOAT Filter :: lastOut()
{
return lastOutput;
}

View File

@@ -1,28 +0,0 @@
/*******************************************/
/* Filter Class, by Perry R. Cook, 1995-96*/
/* This is the base class for all filters.*/
/* To me, most anything is a filter, but */
/* I'll be a little less general here, and*/
/* define a filter as something which has */
/* input(s), output(s), and gain. */
/*******************************************/
#if !defined(__Filter_h)
#define __Filter_h
#include "Object.h"
class Filter : public Object
{
protected:
MY_FLOAT gain;
MY_FLOAT *outputs;
MY_FLOAT *inputs;
MY_FLOAT lastOutput;
public:
Filter();
virtual ~Filter();
MY_FLOAT lastOut();
};
#endif

175
Flute.cpp
View File

@@ -1,175 +0,0 @@
/******************************************/
/* WaveGuide Flute ala Karjalainen, */
/* Smith, Waryznyk, etc. */
/* with polynomial Jet ala Cook */
/* by Perry Cook, 1995-96 */
/* */
/* This is a waveguide model, and thus */
/* relates to various Stanford Univ. */
/* and possibly Yamaha and other patents.*/
/* */
/* Controls: CONTROL1 = jetDelay */
/* CONTROL2 = noiseGain */
/* CONTROL3 = vibFreq */
/* MOD_WHEEL= vibAmt */
/******************************************/
#include "Flute.h"
#include "SKINI11.msg"
Flute :: Flute(MY_FLOAT lowestFreq)
{
long length;
length = (long) (SRATE / lowestFreq + 1);
boreDelay = new DLineL(length);
length >>= 1;
jetDelay = new DLineL(length);
jetTable = new JetTabl;
filter = new OnePole;
dcBlock = new DCBlock;
noise = new Noise;
adsr = new ADSR;
vibr = new RawLoop("rawwaves/sinewave.raw");
this->clear();
boreDelay->setDelay((MY_FLOAT) 100.0);
jetDelay->setDelay((MY_FLOAT) 49.0);
filter->setPole((MY_FLOAT) 0.7 - ((MY_FLOAT) 0.1 * (MY_FLOAT) 22050.0 / SRATE));
filter->setGain((MY_FLOAT) -1.0);
vibr->normalize();
vibr->setFreq((MY_FLOAT) 5.925);
adsr->setAllTimes((MY_FLOAT) 0.005, (MY_FLOAT) 0.01, (MY_FLOAT) 0.8, (MY_FLOAT) 0.010);
endRefl = (MY_FLOAT) 0.5;
jetRefl = (MY_FLOAT) 0.5;
noiseGain = (MY_FLOAT) 0.15; /* Breath pressure random component */
vibrGain = (MY_FLOAT) 0.05; /* breath periodic vibrato component */
jetRatio = (MY_FLOAT) 0.32;
maxPressure = (MY_FLOAT) 0.0;
}
Flute :: ~Flute()
{
delete jetDelay;
delete boreDelay;
delete jetTable;
delete filter;
delete dcBlock;
delete noise;
delete adsr;
delete vibr;
}
void Flute :: clear()
{
jetDelay->clear();
boreDelay->clear();
filter->clear();
dcBlock->clear();
/* adsr->reset(); */
}
void Flute :: setFreq(MY_FLOAT frequency)
{
MY_FLOAT temp;
lastFreq = frequency * (MY_FLOAT) 0.66666; /* we're overblowing here */
temp = SRATE / lastFreq - (MY_FLOAT) 2.0; /* Length - approx. filter delay */
boreDelay->setDelay(temp); /* Length of bore tube */
jetDelay->setDelay(temp * jetRatio); /* jet delay shorter */
}
void Flute :: startBlowing(MY_FLOAT amplitude, MY_FLOAT rate)
{
adsr->setAttackRate(rate);
maxPressure = amplitude / (MY_FLOAT) 0.8;
adsr->keyOn();
}
void Flute :: stopBlowing(MY_FLOAT rate)
{
adsr->setReleaseRate(rate);
adsr->keyOff();
}
void Flute :: noteOn(MY_FLOAT freq, MY_FLOAT amp)
{
this->setFreq(freq);
this->startBlowing((MY_FLOAT) 1.1 + (amp * (MY_FLOAT) 0.20),amp * (MY_FLOAT) 0.02);
outputGain = amp + (MY_FLOAT) 0.001;
#if defined(_debug_)
printf("Flute : NoteOn: Freq=%lf Amp=%lf\n",freq,amp);
#endif
}
void Flute :: noteOff(MY_FLOAT amp)
{
this->stopBlowing(amp * (MY_FLOAT) 0.02);
#if defined(_debug_)
printf("Flute : NoteOff: Amp=%lf\n",amp);
#endif
}
void Flute :: setJetRefl(MY_FLOAT refl)
{
jetRefl = refl;
}
void Flute :: setEndRefl(MY_FLOAT refl)
{
endRefl = refl;
}
void Flute :: setJetDelay(MY_FLOAT aRatio)
{
MY_FLOAT temp;
temp = SRATE / lastFreq - (MY_FLOAT) 2.0; /* Length - approx. filter delay */
jetRatio = aRatio;
jetDelay->setDelay(temp * aRatio); /* Scaled by ratio */
}
MY_FLOAT Flute :: tick()
{
MY_FLOAT temp;
MY_FLOAT pressureDiff;
MY_FLOAT randPressure;
MY_FLOAT breathPressure;
breathPressure = maxPressure * adsr->tick(); /* Breath Pressure */
randPressure = noiseGain * noise->tick(); /* Random Deviation */
randPressure += vibrGain * vibr->tick(); /* + breath vibrato */
randPressure *= breathPressure; /* All scaled by Breath Pressure */
temp = filter->tick(boreDelay->lastOut());
temp = dcBlock->tick(temp); /* Block DC on reflection */
pressureDiff = breathPressure + randPressure - /* Breath Pressure */
(jetRefl * temp); /* - reflected */
pressureDiff = jetDelay->tick(pressureDiff); /* Jet Delay Line */
pressureDiff = jetTable->lookup(pressureDiff) /* Non-Lin Jet + reflected */
+ (endRefl * temp);
lastOutput = (MY_FLOAT) 0.3 * boreDelay->tick(pressureDiff); /* Bore Delay and "bell" filter */
lastOutput *= outputGain;
return lastOutput;
}
void Flute :: controlChange(int number, MY_FLOAT value)
{
#if defined(_debug_)
printf("Flute : ControlChange: Number=%i Value=%f\n",number,value);
#endif
if (number == __SK_JetDelay_)
this->setJetDelay((MY_FLOAT) 0.08 + ((MY_FLOAT) 0.48 * value * NORM_7));
else if (number == __SK_NoiseLevel_)
noiseGain = (value * NORM_7 * (MY_FLOAT) 0.4);
else if (number == __SK_ModFrequency_)
vibr->setFreq((value * NORM_7 * (MY_FLOAT) 12.0));
else if (number == __SK_ModWheel_)
vibrGain = (value * NORM_7 * (MY_FLOAT) 0.4);
else if (number == __SK_AfterTouch_Cont_)
adsr->setTarget(value * NORM_7);
else {
printf("Flute : Undefined Control Number!!\n");
}
}

64
Flute.h
View File

@@ -1,64 +0,0 @@
/******************************************/
/* WaveGuide Flute ala Karjalainen, */
/* Smith, Waryznyk, etc. */
/* with polynomial Jet ala Cook */
/* by Perry Cook, 1995-96 */
/* */
/* This is a waveguide model, and thus */
/* relates to various Stanford Univ. */
/* and possibly Yamaha and other patents.*/
/* */
/* Controls: CONTROL1 = jetDelay */
/* CONTROL2 = noiseGain */
/* CONTROL3 = vibFreq */
/* MOD_WHEEL= vibAmt */
/******************************************/
#if !defined(__Flute_h)
#define __Flute_h
#include "Instrmnt.h"
#include "JetTabl.h"
#include "DLineL.h"
#include "OnePole.h"
#include "DCBlock.h"
#include "Noise.h"
#include "ADSR.h"
#include "RawLoop.h"
class Flute : public Instrmnt
{
protected:
DLineL *jetDelay;
DLineL *boreDelay;
JetTabl *jetTable;
OnePole *filter;
DCBlock *dcBlock;
Noise *noise;
ADSR *adsr;
RawLoop *vibr;
MY_FLOAT lastFreq;
MY_FLOAT maxPressure;
MY_FLOAT jetRefl;
MY_FLOAT endRefl;
MY_FLOAT noiseGain;
MY_FLOAT vibrGain;
MY_FLOAT outputGain;
MY_FLOAT jetRatio;
public:
Flute(MY_FLOAT lowestFreq);
~Flute();
void clear();
void startBlowing(MY_FLOAT amplitude,MY_FLOAT rate);
void stopBlowing(MY_FLOAT rate);
virtual void noteOn(MY_FLOAT freq, MY_FLOAT amp);
virtual void noteOff(MY_FLOAT amp);
void setJetRefl(MY_FLOAT refl);
void setEndRefl(MY_FLOAT refl);
virtual void setFreq(MY_FLOAT frequency);
virtual MY_FLOAT tick();
virtual void controlChange(int number, MY_FLOAT value);
void setJetDelay(MY_FLOAT aLength);
};
#endif

View File

@@ -1,176 +0,0 @@
/*******************************************/
/* Sweepable Formant (2-pole) */
/* Filter Class, by Perry R. Cook, 1995-96*/
/* See books on filters to understand */
/* more about how this works. This drives*/
/* to a target at speed set by rate. */
/*******************************************/
#include "FormSwep.h"
FormSwep :: FormSwep() : Filter()
{
outputs = (MY_FLOAT *) malloc(2 * MY_FLOAT_SIZE);
poleCoeffs[0] = (MY_FLOAT) 0.0;
poleCoeffs[1] = (MY_FLOAT) 0.0;
gain = (MY_FLOAT) 1.0;
freq = (MY_FLOAT) 0.0;
reson = (MY_FLOAT) 0.0;
currentGain = (MY_FLOAT) 1.0;
currentFreq = (MY_FLOAT) 0.0;
currentReson = (MY_FLOAT) 0.0;
targetGain = (MY_FLOAT) 1.0;
targetFreq = (MY_FLOAT) 0.0;
targetReson = (MY_FLOAT) 0.0;
deltaGain = (MY_FLOAT) 0.0;
deltaFreq = (MY_FLOAT) 0.0;
deltaReson = (MY_FLOAT) 0.0;
sweepState = (MY_FLOAT) 0.0;
sweepRate = (MY_FLOAT) 0.002;
dirty = 0;
this->clear();
}
FormSwep :: ~FormSwep()
{
free(outputs);
}
void FormSwep :: clear()
{
outputs[0] = (MY_FLOAT) 0.0;
outputs[1] = (MY_FLOAT) 0.0;
}
void FormSwep :: setPoleCoeffs(MY_FLOAT *coeffs)
{
dirty = 0;
poleCoeffs[0] = coeffs[0];
poleCoeffs[1] = coeffs[1];
}
void FormSwep :: setFreqAndReson(MY_FLOAT aFreq, MY_FLOAT aReson)
{
dirty = 0;
reson = aReson;
freq = aFreq;
currentReson = aReson;
currentFreq = aFreq;
poleCoeffs[1] = - (reson * reson);
poleCoeffs[0] = (MY_FLOAT) 2.0 * reson * (MY_FLOAT) cos(TWO_PI * freq / SRATE);
}
void FormSwep :: setStates(MY_FLOAT aFreq, MY_FLOAT aReson, MY_FLOAT aGain)
{
dirty = 0;
freq = aFreq;
reson = aReson;
gain = aGain;
targetFreq = aFreq;
targetReson = aReson;
targetGain = aGain;
currentFreq = aFreq;
currentReson = aReson;
currentGain = aGain;
}
void FormSwep :: setTargets(MY_FLOAT aFreq, MY_FLOAT aReson, MY_FLOAT aGain)
{
dirty = 1;
targetFreq = aFreq;
targetReson = aReson;
targetGain = aGain;
deltaFreq = aFreq - currentFreq;
deltaReson = aReson - currentReson;
deltaGain = aGain - currentGain;
sweepState = (MY_FLOAT) 0.0;
}
void FormSwep :: setSweepRate(MY_FLOAT aRate)
{
sweepRate = aRate;
}
void FormSwep :: setSweepTime(MY_FLOAT aTime)
{
sweepRate = ONE_OVER_SRATE / aTime;
}
void FormSwep :: setGain(MY_FLOAT aValue)
{
gain = aValue;
}
MY_FLOAT FormSwep :: tick(MY_FLOAT sample) /* Perform Filter Operation */
{
MY_FLOAT temp;
if (dirty) {
sweepState += sweepRate;
if (sweepState>= 1.0) {
sweepState = (MY_FLOAT) 1.0;
dirty = 0;
currentReson = targetReson;
reson = targetReson;
currentFreq = targetFreq;
freq = targetFreq;
currentGain = targetGain;
gain = targetGain;
}
else {
currentReson = reson + (deltaReson * sweepState);
currentFreq = freq + (deltaFreq * sweepState);
currentGain = gain + (deltaGain * sweepState);
}
poleCoeffs[1] = - (currentReson * currentReson);
poleCoeffs[0] = (MY_FLOAT) 2.0 * currentReson *
(MY_FLOAT) cos(TWO_PI * currentFreq / SRATE);
}
temp = currentGain * sample;
temp += poleCoeffs[0] * outputs[0];
temp += poleCoeffs[1] * outputs[1];
outputs[1] = outputs[0];
outputs[0] = temp;
lastOutput = outputs[0];
return lastOutput;
}
/************ Test Main Program *****************/
/*
void main()
{
FormSwep filter;
FILE *fd;
MY_FLOAT temp;
short data;
long i;
fd = fopen("test.raw","wb");
filter.setTargets(100.0,0.99,0.01);
for (i=0;i<20000;i++) {
if (i%100 != 0) temp = 0.0; else temp = 1.0;
data = filter.tick(temp) * 32000.0;
fwrite(&data,2,1,fd);
}
filter.setTargets(1000.0,0.99,0.01);
for (i=0;i<20000;i++) {
if (i%100 != 0) temp = 0.0; else temp = 1.0;
data = filter.tick(temp) * 32000.0;
fwrite(&data,2,1,fd);
}
filter.setTargets(500.0,0.9999,0.001);
for (i=0;i<20000;i++) {
if (i%100 != 0) temp = 0.0; else temp = 1.0;
data = filter.tick(temp) * 32000.0;
fwrite(&data,2,1,fd);
}
fclose(fd);
}
*/

View File

@@ -1,46 +0,0 @@
/*******************************************/
/* Sweepable Formant (2-pole) */
/* Filter Class, by Perry R. Cook, 1995-96*/
/* See books on filters to understand */
/* more about how this works. Nothing */
/* out of the ordinary in this version. */
/*******************************************/
#if !defined(__FormSwep_h)
#define __FormSwep_h
#include "Filter.h"
class FormSwep : public Filter
{
protected:
MY_FLOAT poleCoeffs[2];
MY_FLOAT freq;
MY_FLOAT reson;
int dirty;
MY_FLOAT targetFreq;
MY_FLOAT targetReson;
MY_FLOAT targetGain;
MY_FLOAT currentFreq;
MY_FLOAT currentReson;
MY_FLOAT currentGain;
MY_FLOAT deltaFreq;
MY_FLOAT deltaReson;
MY_FLOAT deltaGain;
MY_FLOAT sweepState;
MY_FLOAT sweepRate;
public:
FormSwep();
~FormSwep();
void clear();
void setPoleCoeffs(MY_FLOAT *coeffs);
void setGain(MY_FLOAT aValue);
void setFreqAndReson(MY_FLOAT aFreq, MY_FLOAT aReson);
void setStates(MY_FLOAT aFreq, MY_FLOAT aReson, MY_FLOAT aGain);
void setTargets(MY_FLOAT aFreq, MY_FLOAT aReson, MY_FLOAT aGain);
void setSweepRate(MY_FLOAT aRate);
void setSweepTime(MY_FLOAT aTime);
MY_FLOAT tick(MY_FLOAT sample);
};
#endif

View File

@@ -1,60 +0,0 @@
/******************************************/
/* Heavy Metal Synth Subclass */
/* of Algorithm 3 (TX81Z) Subclass of */
/* 3 Operator FM Synth */
/* by Perry R. Cook, 1995-96 */
/******************************************/
#include "HeavyMtl.h"
HeavyMtl :: HeavyMtl() : FM4Alg3()
{
this->loadWaves("rawwaves/sinewave.raw",
"rawwaves/twopeaks.raw",
"rawwaves/twopeaks.raw",
"rawwaves/sinewave.raw");
this->setRatio(0,(MY_FLOAT) (1.00 * 1.000));
this->setRatio(1,(MY_FLOAT) (4.00 * 0.999));
this->setRatio(2,(MY_FLOAT) (3.00 * 1.001));
this->setRatio(3,(MY_FLOAT) (0.50 * 1.002));
gains[0] = __FM4Op_gains[92];
gains[1] = __FM4Op_gains[76];
gains[2] = __FM4Op_gains[91];
gains[3] = __FM4Op_gains[68];
adsr[0]->setAllTimes((MY_FLOAT) 0.001,(MY_FLOAT) 0.001,(MY_FLOAT) 1.0,(MY_FLOAT) 0.01);
adsr[1]->setAllTimes((MY_FLOAT) 0.001,(MY_FLOAT) 0.010,(MY_FLOAT) 1.0,(MY_FLOAT) 0.50);
adsr[2]->setAllTimes((MY_FLOAT) 0.010,(MY_FLOAT) 0.005,(MY_FLOAT) 1.0,(MY_FLOAT) 0.20);
adsr[3]->setAllTimes((MY_FLOAT) 0.030,(MY_FLOAT) 0.010,(MY_FLOAT) 0.2,(MY_FLOAT) 0.20);
twozero->setGain((MY_FLOAT) 2.0);
vibWave->setFreq((MY_FLOAT) 5.5);
modDepth = (MY_FLOAT) 0.00;
}
HeavyMtl :: ~HeavyMtl()
{
}
void HeavyMtl :: setFreq(MY_FLOAT frequency)
{
baseFreq = frequency;
waves[0]->setFreq(baseFreq * ratios[0]);
waves[1]->setFreq(baseFreq * ratios[1]);
waves[2]->setFreq(baseFreq * ratios[2]);
waves[3]->setFreq(baseFreq * ratios[3]);
}
void HeavyMtl :: noteOn(MY_FLOAT freq, MY_FLOAT amp)
{
gains[0] = amp * __FM4Op_gains[92];
gains[1] = amp * __FM4Op_gains[76];
gains[2] = amp * __FM4Op_gains[91];
gains[3] = amp * __FM4Op_gains[68];
this->setFreq(freq);
this->keyOn();
#if defined(_debug_)
printf("HeavyMtl : NoteOn: Freq=%lf Amp=%lf\n",freq,amp);
#endif
}

View File

@@ -1,22 +0,0 @@
/******************************************/
/* Heavy Metal Synth Subclass */
/* of Algorithm 3 (TX81Z) Subclass of */
/* 3 Operator FM Synth */
/* by Perry R. Cook, 1995-96 */
/******************************************/
#if !defined(__HeavyMtl_h)
#define __HeavyMtl_h
#include "FM4Alg3.h"
class HeavyMtl : public FM4Alg3
{
public:
HeavyMtl();
~HeavyMtl();
virtual void setFreq(MY_FLOAT frequency);
virtual void noteOn(MY_FLOAT freq, MY_FLOAT amp);
};
#endif

58
INSTALL.md Normal file
View File

@@ -0,0 +1,58 @@
% The Synthesis ToolKit in C++ (STK)
% Perry R. Cook and Gary P. Scavone
% 1995--2016
# The Synthesis ToolKit in C++ (STK)
By Perry R. Cook and Gary P. Scavone, 1995--2016.
The Synthesis ToolKit in C++ can be used in a variety of ways, depending on your particular needs. Some people simply choose the classes they need for a particular project and copy those to their project directory. Others like to compile and link to a library of object files. STK was not designed with one particular style of use in mind.
## Unix systems and MinGW
1. If you downloaded the software from the git repository, first run autoconf,
autoconf
otherwise, if you downloaded the software from the STK source distribution, unpack the tar file,
tar -xzf stk-4.x.x.tar.gz
2. From within the directory containing this file, run configure:
./configure
3. From within each project directory, type `make`.
4. To compile a library of objects, type `make` from within the `src` directory.
Several options can be passed to configure, including:
--disable-realtime = only compile generic non-realtime classes
--enable-debug = enable various debug output
--with-alsa = choose native ALSA API support (default, linux only)
--with-oss = choose native OSS API support (linux only)
--with-jack = choose native JACK server API support (linux and macintosh OS-X)
--with-core = choose OS-X Core Audio API (macintosh OS-X only)
--with-asio = choose ASIO API support (windows only)
--with-ds = choose DirectSound API support (windows only)
--with-wasapi = choose Windows Audio Session API support (windows only)
It is now possible to specify more than one audio and MIDI API where supported. Note, however, that the ALSA library is required in order to compile the RtMidi class in Linux if the `--with-oss` option is provided (only the OSS audio API will be used, not the OSS MIDI API). Typing `./configure --help` will display all the available options. In addition, it is possible to specify the RAWWAVES and INCLUDE paths to configure as (ex. to set to /home/me/rawwaves and /home/me/include):
./configure RAWWAVE_PATH='$(HOME)/rawwaves/'
./configure INCLUDE_PATH='$(HOME)/include/'
The ending "/" is required for the RAWWAVES path. The default behavior will set a relative path that works for the project files included with the distribution (assuming they are not moved). You can also change the RAWWAVE_PATH dynamically via the static Stk::setRawwavePath() function.
If you wish to use a different compiler than that selected by configure, specify that compiler in the command line (ex. to use CC):
./configure CXX=CC
## Windows
MinGW support is provided in the configure script. In addition, Visual C++ 6.0 project files are included for each of the example STK projects, though these may not work with more recent versions of Visual Studio.
##iOS
You can integrate the STK in iOS projects either by using its iOS static library or Cocoapods. See the [iOS README file](iOS/README-iOS.md) for instructions.

View File

@@ -1,45 +0,0 @@
/******************************************/
/* Instrument SuperClass for Toolkit96 */
/* Perry R. Cook, Princeton University */
/******************************************/
#include "Instrmnt.h"
Instrmnt :: Instrmnt()
{
}
Instrmnt :: ~Instrmnt()
{
}
void Instrmnt :: noteOn(MY_FLOAT freq, MY_FLOAT amp)
{
printf("Warning!! Instrument Class noteOn here!! %f %f\n",freq,amp);
}
void Instrmnt :: noteOff(MY_FLOAT amp)
{
printf("Warning!! Instrument Class noteOff here!! %f\n",amp);
}
void Instrmnt :: setFreq(MY_FLOAT freq)
{
printf("Warning!! Instrument Class setFreq here!! %f\n",freq);
}
MY_FLOAT Instrmnt :: tick()
{
printf("Warning!! Instrument Class tick here!!\n");
return lastOutput;
}
MY_FLOAT Instrmnt :: lastOut()
{
return lastOutput;
}
void Instrmnt :: controlChange(int number, MY_FLOAT value)
{
printf("Warning!! Instrument Class Control Change here!! %i %f\n",number,value);
}

View File

@@ -1,26 +0,0 @@
/******************************************/
/* Instrument SuperClass for Toolkit96 */
/* Perry R. Cook, Princeton University */
/******************************************/
#if !defined(__Instrmnt_h)
#define __Instrmnt_h
#include "Object.h"
class Instrmnt : public Object
{
protected:
MY_FLOAT lastOutput;
public:
Instrmnt();
virtual ~Instrmnt();
MY_FLOAT lastOut();
virtual void noteOn(MY_FLOAT freq, MY_FLOAT amp);
virtual void noteOff(MY_FLOAT amp);
virtual void setFreq(MY_FLOAT frequency);
virtual MY_FLOAT tick();
virtual void controlChange(int number, MY_FLOAT value);
};
#endif

166
JCRev.cpp
View File

@@ -1,166 +0,0 @@
/*******************************************/
/* JVRev Reverb Subclass */
/* by Tim Stilson, 1998 */
/* based on CLM JCRev */
/* Integrated into STK by Gary Scavone */
/* */
/* This is based on some of the famous */
/* Stanford CCRMA reverbs (NRev, KipRev) */
/* all based on the the Chowning/Moorer/ */
/* Schroeder reverberators, which use */
/* networks of simple allpass and comb */
/* delay filters. This particular */
/* arrangement consists of 3 allpass */
/* filters in series, followed by 4 comb */
/* filters in parallel, an optional */
/* lowpass filter, and two decorrelation */
/* delay lines in parallel at the output. */
/*******************************************/
#include "JCRev.h"
//#define LOWPASS
JCRev :: JCRev(MY_FLOAT T60)
{
/* These are the values from CLM's JCRev.ins ... I found that the
impulse response sounded better with the shorter delay lengths.
--Gary Scavone, 2/1998
int lens[9] = {4799,4999,5399,5801,1051,337,113,573,487};
*/
int lens[9] = {1777,1847,1993,2137,389,127,43,211,179};
int val, i;
if (SRATE < 44100.0) {
double srscale = SRATE / 44100.0;
for (i=0; i<9; i++) {
val = (int) floor(srscale * lens[i]);
if ((val & 1) == 0) val++;
while (!this->isprime(val)) val += 2;
lens[i] = val;
}
}
for (i=0; i<3; i++)
{
APdelayLine[i] = new DLineN(lens[i+4] + 2);
APdelayLine[i]->setDelay(lens[i+4]);
}
for (i=0; i<4; i++)
{
CdelayLine[i] = new DLineN(lens[i] + 2);
CdelayLine[i]->setDelay(lens[i]);
combCoeff[i] = pow(10,(-3 * lens[i] / (T60 * SRATE)));
// printf("combCoeff[%d] = %f\n", i, combCoeff[i]);
}
outLdelayLine = new DLineN(lens[7] + 2);
outLdelayLine->setDelay(lens[7]);
outRdelayLine = new DLineN(lens[8] + 2);
outRdelayLine->setDelay(lens[8]);
allPassCoeff = 0.7;
effectMix = 0.3;
this->clear();
}
JCRev :: ~JCRev()
{
delete APdelayLine[0];
delete APdelayLine[1];
delete APdelayLine[2];
delete CdelayLine[0];
delete CdelayLine[1];
delete CdelayLine[2];
delete CdelayLine[3];
delete outLdelayLine;
delete outRdelayLine;
}
void JCRev :: clear()
{
APdelayLine[0]->clear();
APdelayLine[1]->clear();
APdelayLine[2]->clear();
CdelayLine[0]->clear();
CdelayLine[1]->clear();
CdelayLine[2]->clear();
CdelayLine[3]->clear();
outRdelayLine->clear();
outLdelayLine->clear();
lastOutL = 0.0;
lastOutR = 0.0;
combsum1=0.0;
combsum2=0.0;
combsum=0.0;
}
void JCRev :: setEffectMix(MY_FLOAT mix)
{
effectMix = mix;
}
MY_FLOAT JCRev :: lastOutput()
{
return (lastOutL + lastOutR) * 0.5;
}
MY_FLOAT JCRev :: lastOutputL()
{
return lastOutL;
}
MY_FLOAT JCRev :: lastOutputR()
{
return lastOutR;
}
MY_FLOAT JCRev :: tick(MY_FLOAT input)
{
MY_FLOAT temp,temp0,temp1,temp2,temp3,temp4,temp5,temp6;
MY_FLOAT filtout;
temp = APdelayLine[0]->lastOut();
temp0 = allPassCoeff * temp;
temp0 += input;
APdelayLine[0]->tick(temp0);
temp0 = -(allPassCoeff * temp0) + temp;
temp = APdelayLine[1]->lastOut();
temp1 = allPassCoeff * temp;
temp1 += temp0;
APdelayLine[1]->tick(temp1);
temp1 = -(allPassCoeff * temp1) + temp;
temp = APdelayLine[2]->lastOut();
temp2 = allPassCoeff * temp;
temp2 += temp1;
APdelayLine[2]->tick(temp2);
temp2 = -(allPassCoeff * temp2) + temp;
temp3 = temp2 + (combCoeff[0] * CdelayLine[0]->lastOut());
temp4 = temp2 + (combCoeff[1] * CdelayLine[1]->lastOut());
temp5 = temp2 + (combCoeff[2] * CdelayLine[2]->lastOut());
temp6 = temp2 + (combCoeff[3] * CdelayLine[3]->lastOut());
CdelayLine[0]->tick(temp3);
CdelayLine[1]->tick(temp4);
CdelayLine[2]->tick(temp5);
CdelayLine[3]->tick(temp6);
#ifdef LOWPASS
combsum2=combsum1;
combsum1=combsum;
combsum = temp3+temp4+temp5+temp6;
filtout= 0.5*combsum1+0.25*(combsum+combsum2);
#else
filtout = temp3+temp4+temp5+temp6;
#endif
lastOutL = effectMix * (outLdelayLine->tick(filtout));
lastOutR = effectMix * (outRdelayLine->tick(filtout));
temp = (1.0 - effectMix) * input;
lastOutL += temp;
lastOutR += temp;
return (lastOutL + lastOutR) * 0.5;
}

52
JCRev.h
View File

@@ -1,52 +0,0 @@
/*******************************************/
/* JVRev Reverb Subclass */
/* by Tim Stilson, 1998 */
/* based on CLM JCRev */
/* Integrated into STK by Gary Scavone */
/* */
/* This is based on some of the famous */
/* Stanford CCRMA reverbs (NRev, KipRev) */
/* all based on the the Chowning/Moorer/ */
/* Schroeder reverberators, which use */
/* networks of simple allpass and comb */
/* delay filters. This particular */
/* arrangement consists of 3 allpass */
/* filters in series, followed by 4 comb */
/* filters in parallel, an optional */
/* lowpass filter, and two decorrelation */
/* delay lines in parallel at the output. */
/*******************************************/
#if !defined(__JCRev_h)
#define __JCRev_h
#include "Object.h"
#include "Reverb.h"
#include "DLineN.h"
class JCRev : public Reverb
{
protected:
DLineN *APdelayLine[3];
DLineN *CdelayLine[4];
DLineN *outLdelayLine;
DLineN *outRdelayLine;
MY_FLOAT allPassCoeff;
MY_FLOAT combCoeff[4];
MY_FLOAT combsum,combsum1,combsum2;
MY_FLOAT lastOutL;
MY_FLOAT lastOutR;
MY_FLOAT effectMix;
public:
JCRev(MY_FLOAT T60);
~JCRev();
void clear();
void setEffectMix(MY_FLOAT mix);
MY_FLOAT lastOutput();
MY_FLOAT lastOutputL();
MY_FLOAT lastOutputR();
MY_FLOAT tick(MY_FLOAT input);
};
#endif

View File

@@ -1,36 +0,0 @@
/**********************************************/
/* Jet Table Object by Perry R. Cook, 1995-96 */
/* Consult Fletcher and Rossing, Karjalainen, */
/* Cook, more, for information. */
/* This, as with many other of my "tables", */
/* is not a table, but is computed by poly- */
/* nomial calculation. */
/**********************************************/
#include "JetTabl.h"
JetTabl :: JetTabl()
{
lastOutput = (MY_FLOAT) 0.0;
}
JetTabl :: ~JetTabl()
{
}
MY_FLOAT JetTabl :: lookup(MY_FLOAT sample) /* Perform "Table Lookup" */
{ /* By Polynomial Calculation */
lastOutput = sample *
(sample*sample - (MY_FLOAT) 1.0); /* (x^3 - x) approximates sigmoid of jet */
if (lastOutput > 1.0)
lastOutput = (MY_FLOAT) 1.0; /* Saturation at +/- 1.0 */
if (lastOutput < -1.0)
lastOutput = (MY_FLOAT) -1.0;
return lastOutput;
}
MY_FLOAT JetTabl :: lastOut()
{
return lastOutput;
}

View File

@@ -1,22 +0,0 @@
/**********************************************/
/* Jet Table Object by Perry R. Cook, 1995-96 */
/* Consult Fletcher and Rossing, Karjalainen, */
/* Cook, more, for information. */
/* This, as with many other of my "tables", */
/* is not a table, but is computed by poly- */
/* nomial calculation. */
/**********************************************/
#include "Object.h"
class JetTabl : public Object
{
protected:
MY_FLOAT lastOutput;
public:
JetTabl();
~JetTabl();
MY_FLOAT lookup(MY_FLOAT deltaP);
MY_FLOAT lastOut();
};

27
LICENSE Normal file
View File

@@ -0,0 +1,27 @@
The Synthesis ToolKit in C++ (STK)
Copyright (c) 1995--2016 Perry R. Cook and Gary P. Scavone
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
Any person wishing to distribute modifications to the Software is
asked to send the modifications to the original developer so that they
can be incorporated into the canonical version. This is, however, not
a binding provision of this license.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

View File

@@ -1,67 +0,0 @@
/**********************************************/
/* Lip Filter Object by Perry R. Cook, 1995-96*/
/* The lip of the brass player has dynamics */
/* which are controlled by the mass, spring */
/* constant, and damping of the lip. This */
/* filter simulates that behavior and the */
/* transmission/reflection properties as */
/* well. See Cook TBone and HosePlayer */
/* instruments and articles. */
/**********************************************/
#include "LipFilt.h"
LipFilt :: LipFilt()
{
MY_FLOAT coeffs[2];
filter = new BiQuad;
coeffs[0] = (MY_FLOAT) 0.0;
coeffs[1] = (MY_FLOAT) 0.0;
filter->setZeroCoeffs(coeffs);
this->clear();
}
LipFilt :: ~LipFilt()
{
delete filter;
}
void LipFilt :: clear()
{
filter->clear();
lastOutput = (MY_FLOAT) 0.0;
}
void LipFilt :: setFreq(MY_FLOAT frequency)
{
MY_FLOAT coeffs[2];
coeffs[0] = (MY_FLOAT) 2.0 * (MY_FLOAT) 0.997 *
(MY_FLOAT) cos(TWO_PI * frequency / SRATE); /* damping should change with */
coeffs[1] = (MY_FLOAT) (-0.997 * 0.997); /* lip parameters, but not yet.*/
filter->setPoleCoeffs(coeffs);
filter->setGain((MY_FLOAT) 0.03);
}
/* NOTE: Here we should add lip tension */
/* settings based on Mass/Spring/Damping */
/* Maybe in TookKit97 */
MY_FLOAT LipFilt :: tick(MY_FLOAT mouthSample,MY_FLOAT boreSample)
/* Perform "Table Lookup" By Polynomial Calculation */
{
MY_FLOAT temp;
temp = mouthSample - boreSample; /* Differential pressure */
temp = filter->tick(temp); /* Force -> position */
temp = temp*temp; /* Simple position to area mapping */
if (temp > 1.0) temp = (MY_FLOAT) 1.0; /* Saturation at + 1.0 */
lastOutput = temp * mouthSample; /* Assume mouth input = area */
lastOutput += ((MY_FLOAT) 1.0 - temp)
* boreSample; /* and Bore reflection is compliment. */
return lastOutput;
}
MY_FLOAT LipFilt :: lastOut()
{
return lastOutput;
}

View File

@@ -1,28 +0,0 @@
/**********************************************/
/* Lip Filter Object by Perry R. Cook, 1995-96*/
/* The lip of the brass player has dynamics */
/* which are controlled by the mass, spring */
/* constant, and damping of the lip. This */
/* filter simulates that behavior and the */
/* transmission/reflection properties as */
/* well. See Cook TBone and HosePlayer */
/* instruments and articles. */
/**********************************************/
#include "Object.h"
#include "BiQuad.h"
class LipFilt : public Object
{
protected:
BiQuad *filter;
MY_FLOAT lastOutput;
public:
LipFilt();
~LipFilt();
void clear();
void setFreq(MY_FLOAT frequency);
MY_FLOAT tick(MY_FLOAT mouthSample,MY_FLOAT boreSample);
MY_FLOAT lastOut();
};

View File

@@ -1,378 +0,0 @@
/*******************************************/
/* Simple Realtime MIDI to SKINI Parser */
/* Gary P. Scavone, February 1998. */
/* Revised for sockets, May & June 1998. */
/* */
/* This object takes MIDI from the input */
/* stream (via the MIDIIO class), */
/* parses it, and turns it into SKINI */
/* messages. */
/*******************************************/
#include "miditabl.h"
#include "MIDIIO.h"
#include "SKINI11.msg"
int outAHere = 0;
#if defined(__SGI_REALTIME_)
#include <sys/types.h>
#include <sys/prctl.h>
#include <signal.h>
#include <unistd.h>
pid_t exit_thread;
void newString(void *)
{
char inputString[128];
printf("Type 'ex<cr>' to quit.\n");
while (!outAHere) {
fgets(inputString, 128, stdin);
if (inputString[0] == 'e' && inputString[1] == 'x') {
outAHere = 1;
}
else printf("Type 'ex<cr>' to quit.\n");
}
}
#elif defined(__USS_REALTIME_)
#include <pthread.h>
pthread_t exit_thread;
void *newString(void *)
{
char inputString[128];
printf("Type 'ex<cr>' to quit.\n");
while (!outAHere) {
fgets(inputString, 128, stdin);
if (inputString[0] == 'e' && inputString[1] == 'x') {
outAHere = 1;
}
else printf("Type 'ex<cr>' to quit.\n");
}
}
#elif (defined(__WINDS_REALTIME_) || defined(__WINMM_REALTIME_) )
#include <process.h>
#include <winsock.h>
unsigned long exit_thread;
void newString(void *)
{
char inputString[128];
printf("Type 'ex<cr>' to quit.\n");
while (!outAHere) {
fgets(inputString, 128, stdin);
if (inputString[0] == 'e' && inputString[1] == 'x') {
outAHere = 1;
}
else printf("Type 'ex<cr>' to quit.\n");
}
}
#endif
void errorf(void) {
printf("useage: MD2SKINI <file name>\n");
printf(" where the optional <file name> specifies a file\n");
printf(" to which the SKINI output stream is written.\n");
printf(" The SKINI output stream is always written to stdout,\n");
printf(" whether an output file is specified or not.\n");
exit(0);
}
void main(int argc,char *argv[])
{
long j;
int oneOn = 0;
MY_FLOAT byte2, byte3;
int channel;
int firstMessage = 1;
int writeFileOut = 0;
FILE *fileOut;
MIDIIO *controller;
if (argc>2) {
errorf();
}
if (argc == 2) {
fileOut = fopen(argv[1],"wb");
writeFileOut = 1;
}
MY_FLOAT dt=0.0;
controller = new MIDIIO();
/* Setup the exit thread. */
#if defined(__SGI_REALTIME_)
exit_thread = sproc(newString, PR_SALL);
if (exit_thread == -1) {
fprintf(stderr, "Unable to create exit thread.\n");
printf("Exiting MD2SKINI process.\n");
exit(0);
}
#elif defined(__USS_REALTIME_)
int err = 0;
err = pthread_create(&exit_thread, NULL, newString, NULL);
if (err)
{
fprintf(stderr, "Unable to create exit thread.\n");
printf("Exiting MD2SKINI process.\n");
exit(0);
}
#elif (defined(__WINDS_REALTIME_) || defined(__WINMM_REALTIME_) )
exit_thread = _beginthread(newString, 0, NULL);
if (exit_thread == -1) {
fprintf(stderr, "Unable to create exit thread.\n");
printf("Exiting MD2SKINI process.\n");
exit(0);
}
#endif
/* Setup the client socket */
#if defined(__SOCKET)
WORD wVersionRequested = MAKEWORD(1,1);
WSADATA wsaData;
SOCKET theSocket;
int nRet;
nRet = WSAStartup(wVersionRequested, &wsaData);
if (wsaData.wVersion != wVersionRequested)
{
fprintf(stderr,"\n Wrong version\n");
outAHere = 1;
WSACleanup();
exit(0);
}
theSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (theSocket == INVALID_SOCKET)
{
fprintf(stderr,"socket open failed\n");
outAHere = 1;
WSACleanup();
exit(0);
}
/* Fill in the address structure */
SOCKADDR_IN saServer;
/* Modified to always use the loopback address of 127.0.0.1 */
saServer.sin_family = AF_INET;
saServer.sin_port = htons(2001); // Port number from command line
saServer.sin_addr.S_un.S_addr = inet_addr( "127.0.0.1" );
/* connect to the server */
nRet = connect(theSocket, (LPSOCKADDR)&saServer, sizeof(struct sockaddr));
if (nRet == SOCKET_ERROR)
{
fprintf(stderr,"socket connect failed\n");
closesocket(theSocket);
outAHere = 1;
WSACleanup();
exit(0);
}
#endif
/* Write SKINI messages to buffer 's'. This is the easiest way
to allow this single executable to work for both socketing
and printf's to stdout.
*/
char s[128];
while (!outAHere) {
if (controller->nextMessage() > 0) {
byte3 = controller->getByteThree();
byte2 = controller->getByteTwo();
channel = controller->getChannel();
if (writeFileOut) dt = controller->getDeltaTime();
if (firstMessage) { /* first MIDI message time stamp is meaningless */
dt = 0.0;
firstMessage = 0;
}
switch(controller->getType()) {
case __SK_NoteOn_:
if (byte3 < 1.0) {
if (oneOn == 1) {
sprintf(s,"NoteOff\t\t%.3f %d %.1f %.1f\n",0.0,channel,byte2,64.0);
if (writeFileOut) {
fprintf(fileOut,"NoteOff\t\t%.3f %d %.1f %.1f\n",dt,channel,byte2,64.0);
}
}
oneOn -= 1;
} else {
sprintf(s,"NoteOn\t\t%.3f %d %.1f %.1f\n",0.0,channel,byte2,byte3);
if (writeFileOut) {
fprintf(fileOut,"NoteOn\t\t%.3f %d %.1f %.1f\n",dt,channel,byte2,byte3);
}
oneOn += 1;
}
break;
case __SK_NoteOff_:
if (byte3 < 2.0) byte3 = 64.0;
if (oneOn == 1) {
sprintf(s,"NoteOff\t\t%.3f %d %.1f %.1f\n",0.0,channel,byte2,byte3);
}
if (writeFileOut) {
fprintf(fileOut,"NoteOff\t\t%.3f %d %.1f %.1f\n",dt,channel,byte2,byte3);
}
oneOn -= 1;
break;
case __SK_PolyPressure_:
sprintf(s,"PolyPressure\t%.3f %d %.1f %.1f\n",0.0,channel,byte2,byte3);
if (writeFileOut) {
fprintf(fileOut,"PolyPressure\t%.3f %d %.1f %.1f\n",dt,channel,byte2,byte3);
}
break;
case __SK_ControlChange_:
j = (int) byte2;
switch(j) {
case __SK_Volume_:
sprintf(s,"Volume\t%.3f %d %.1f\n",0.0,channel,byte3);
if (writeFileOut) {
fprintf(fileOut,"Volume\t%.3f %d %.1f\n",dt,channel,byte3);
}
break;
case __SK_ModWheel_:
sprintf(s,"ModWheel\t%.3f %d %.1f\n",0.0,channel,byte3);
if (writeFileOut) {
fprintf(fileOut,"ModWheel\t%.3f %d %.1f\n",dt,channel,byte3);
}
break;
case __SK_Breath_:
sprintf(s,"Breath\t\t%.3f %d %.1f\n",0.0,channel,byte3);
if (writeFileOut) {
fprintf(fileOut,"Breath\t\t%.3f %d %.1f\n",dt,channel,byte3);
}
break;
case __SK_FootControl_:
sprintf(s,"FootControl\t%.3f %d %.1f\n",0.0,channel,byte3);
if (writeFileOut) {
fprintf(fileOut,"FootControl\t%.3f %d %.1f\n",dt,channel,byte3);
}
break;
case __SK_Portamento_:
sprintf(s,"Portamento\t%.3f %d %.1f\n",0.0,channel,byte3);
if (writeFileOut) {
fprintf(fileOut,"Portamento\t%.3f %d %.1f\n",dt,channel,byte3);
}
break;
case __SK_Balance_:
sprintf(s,"Balance\t%.3f %d %.1f\n",0.0,channel,byte3);
if (writeFileOut) {
fprintf(fileOut,"Balance\t%.3f %d %.1f\n",dt,channel,byte3);
}
break;
case __SK_Pan_:
sprintf(s,"Pan\t\t%.3f %d %.1f\n",0.0,channel,byte3);
if (writeFileOut) {
fprintf(fileOut,"Pan\t\t%.3f %d %.1f\n",dt,channel,byte3);
}
break;
case __SK_Sustain_:
sprintf(s,"Sustain\t%.3f %d %.1f\n",0.0,channel,byte3);
if (writeFileOut) {
fprintf(fileOut,"Sustain\t%.3f %d %.1f\n",dt,channel,byte3);
}
break;
case __SK_Expression_:
sprintf(s,"Expression\t%.3f %d %.1f\n",0.0,channel,byte3);
if (writeFileOut) {
fprintf(fileOut,"Expression\t%.3f %d %.1f\n",dt,channel,byte3);
}
break;
default:
sprintf(s,"ControlChange\t%.3f %d %ld %.1f\n",0.0,channel,j,byte3);
if (writeFileOut) {
fprintf(fileOut,"ControlChange\t%.3f %d %ld %.1f\n",dt,channel,j,byte3);
}
break;
}
break;
case __SK_ProgramChange_:
j = (int) byte2;
sprintf(s,"ProgramChange\t%.3f %d %ld\n",0.0,channel,j);
if (writeFileOut) {
fprintf(fileOut,"ProgramChange\t%.3f %d %ld\n",dt,channel,j);
}
break;
case __SK_ChannelPressure_:
sprintf(s,"ChannelPressure\t%.3f %d %.1f\n",0.0,channel,byte2);
if (writeFileOut) {
fprintf(fileOut,"ChannelPressure\t%.3f %d %.1f\n",dt,channel,byte2);
}
break;
case __SK_PitchBend_:
sprintf(s,"PitchBend\t%.3f %d %f\n",0.0,channel,byte2);
if (writeFileOut) {
fprintf(fileOut,"PitchBend\t%.3f %d %f\n",dt,channel,byte2);
}
break;
default:
sprintf(s,"// Unknown\t%.3f %d %f %f\n",0.0,channel,byte2,byte3);
if (writeFileOut) {
fprintf(fileOut,"// Unknown\t\t%.3f %d %f %f\n",dt,channel,byte2,byte3);
}
break;
}
#if defined(__SOCKET)
nRet = send(theSocket, s, strlen(s), 0);
if (nRet == SOCKET_ERROR)
{
fprintf(stderr,"send failed\n");
closesocket(theSocket);
outAHere = 1;
WSACleanup();
exit(0);
}
#else
printf("%s", s);
fflush(stdout);
#endif
memset(s, 0, sizeof(s));
#if defined(__OS_Win_)
} else Sleep ( (DWORD) 2);
#else
} else usleep( (unsigned long) 2000);
#endif
}
sprintf(s,"Exiting MD2SKINI process ... bye!\n");
#if defined(__SOCKET)
nRet = send(theSocket, s, strlen(s), 0);
closesocket(theSocket);
WSACleanup();
#else
printf("%s", s);
fflush(stdout);
#endif
if (writeFileOut) {
printf("Wrote SKINI output to file %s.\n", argv[1]);
fclose(fileOut);
}
delete controller;
#if defined(__SGI_REALTIME_)
kill(exit_thread, SIGKILL);
#endif
}

View File

@@ -1,574 +0,0 @@
/******************************************/
/* MIDIIO.cpp */
/* Realtime MIDI I/O Object for STK, */
/* by Gary P. Scavone, 1998. */
/* Based in part on code by Perry */
/* Cook (SGI), Paul Leonard (Linux), */
/* the RoseGarden team (Linux), and */
/* Bill Putnam (Win95/NT). */
/* */
/* At the moment, this object only */
/* handles MIDI Input, though MIDI */
/* Output code can go here when someone */
/* decides they need it (and writes it). */
/* */
/* This object opens a MIDI Input device */
/* and parses MIDI messages into a MIDI */
/* buffer. Time stamp info is converted */
/* to deltaTime. MIDI data is stored as */
/* MY_FLOAT to conform with SKINI. */
/******************************************/
#include "MIDIIO.h"
#define MIDI_BUFFER_SIZE 1024
int writeOffset;
int readOffset;
#if defined(__SGI_REALTIME_)
/*************************************/
/* __SGI_REALTIME_ */
/*************************************/
#include <dmedia/midi.h>
#include <sys/types.h>
#include <sys/prctl.h>
#include <signal.h>
MDport inport;
MDevent *midiBuffer;
pid_t midi_input_pid;
void midiInputThread(void *)
{
MDevent newMessage;
int status;
while (1) {
mdReceive(inport, &newMessage, 1);
status = (newMessage.msg[0] & MD_STATUSMASK);
// Ignore Active Sensing messages
if (!((status & 0xff) == 0xfe || (status & 0xff) == 0xf8)) {
midiBuffer[writeOffset] = newMessage;
writeOffset++;
if( writeOffset >= MIDI_BUFFER_SIZE )
writeOffset = 0;
}
}
}
MIDIIO :: MIDIIO()
{
int nports;
nports = mdInit();
printf("%d MIDI devices available\n", nports);
inport = mdOpenInPort(NULL);
if (inport == NULL) {
fprintf(stderr,"Cannot open MIDI device.\n");
printf("Exiting MIDIIO Process.\n");
exit(0);
}
mdSetStampMode(inport, MD_NOSTAMP);
// Set up the circular buffer for the Midi Input Messages
midiBuffer = new MDevent[MIDI_BUFFER_SIZE];
readOffset = 0;
writeOffset = 0;
midi_input_pid = sproc(midiInputThread, PR_SALL);
if (midi_input_pid == -1) {
fprintf(stderr, "unable to create MIDI input thread...aborting.\n");
exit(0);
}
}
MIDIIO :: ~MIDIIO()
{
kill (midi_input_pid, SIGKILL);
mdClosePort(inport);
delete [] midiBuffer;
}
int MIDIIO :: nextMessage()
{
int status;
int byte1;
int byte2;
MDevent lastEvent;
static unsigned long long lastTimeStamp = 0;
if ( readOffset == writeOffset ) return 0;
lastEvent = midiBuffer[readOffset];
readOffset++;
if ( readOffset >= MIDI_BUFFER_SIZE ) readOffset = 0;
status = (lastEvent.msg[0] & MD_STATUSMASK);
byte1 = lastEvent.msg[1];
byte2 = lastEvent.msg[2];
channel = (lastEvent.msg[0] & MD_CHANNELMASK);
if ((status == MD_PROGRAMCHANGE) ||
(status == MD_CHANNELPRESSURE))
{
messageType = status;
byteTwo = (float) byte1;
deltaTime = (MY_FLOAT) ((lastEvent.stamp - lastTimeStamp) * 0.000000001);
lastTimeStamp = lastEvent.stamp;
}
else if ((status == MD_NOTEON) || (status == MD_NOTEOFF) ||
(status == MD_CONTROLCHANGE) || (status == MD_POLYKEYPRESSURE))
{
messageType = status;
byteTwo = (float) byte1;
byteThree = (float) byte2;
deltaTime = (MY_FLOAT) ((lastEvent.stamp - lastTimeStamp) * 0.000000001);
lastTimeStamp = lastEvent.stamp;
}
else if (status == MD_PITCHBENDCHANGE)
{
messageType = status;
byteTwo = (float) byte1 * NORM_7;
byteTwo += (float) byte2;
deltaTime = (MY_FLOAT) ((lastEvent.stamp - lastTimeStamp) * 0.000000001);
lastTimeStamp = lastEvent.stamp;
}
else
{
messageType = -1;
}
return messageType;
}
#elif defined(__USS_REALTIME_)
/*************************************/
/* __USS_REALTIME_ */
/*************************************/
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/soundcard.h>
#include <pthread.h>
int _seqfd;
typedef unsigned char byte;
typedef struct {
byte data[4];
unsigned long time;
} MIDIMESSAGE;
MIDIMESSAGE *midiBuffer;
/* System Messages */
#define MIDI_SYSTEM_MSG ((byte)0xF0)
#define MessageType(MSG) (byte)((MSG) & ((byte)0xF0))
#define SEQUENCER_PATH "/dev/sequencer"
/* MIDI time code at 100 ticks per second. */
#define OSS_MIDI_CLOCK_RATE 100
pthread_t midi_input_thread;
void *midiInputThread(void *)
{
byte NumArgs = 0;
byte ArgsLeft = 0;
unsigned long lastTime = 0;
unsigned long newTime = 0;
byte InBytes[4];
static MIDIMESSAGE newMessage;
int n;
while (1) {
if ((n = read(_seqfd, &InBytes, sizeof(InBytes))) == -1) {
fprintf(stderr,"Error reading " SEQUENCER_PATH "\n");
exit(0);
}
switch ( InBytes[0] )
{
case SEQ_WAIT:
/* MIDI clock ticks ... the first MIDI message deltaTime is calculated
* with respect to the start of the MIDI clock.
*/
newTime = ((InBytes[3]<<16)|(InBytes[2]<<8)| InBytes[1]);
break;
case SEQ_ECHO:
/* no echo events yet defined */
#ifdef DEBUG
fprintf(stderr,"ECHO EVENT\n");
#endif
break;
case SEQ_MIDIPUTC:
/* Determination of a full MIDI message from the input MIDI stream is based
here on the observation that MIDI status bytes and subsequent data bytes
are NOT returned in the same read() call. Rather, they are spread out
over multiple read() returns, with only a single value per return. So,
if we find a status byte, we then determine the number of expected
operands and process that number of subsequent read()s to determine the
complete MIDI message.
*/
if (InBytes[1] & 0x80) { /* Status Byte */
if (MessageType(InBytes[1]) == MIDI_SYSTEM_MSG)
{
NumArgs = 0; /* no timing info */
#ifdef DEBUG
fprintf(stderr, "SYSTEM MESSAGE\n");
#endif
}
else if (MessageType(InBytes[1]) == MIDI_PGM_CHANGE ||
MessageType(InBytes[1]) == MIDI_CHN_PRESSURE)
{
NumArgs = 1;
}
else
{
NumArgs = 2;
}
newMessage.data[0] = InBytes[1];
ArgsLeft = NumArgs;
newMessage.data[1] = 0;
newMessage.data[2] = 0;
}
if (ArgsLeft && !(InBytes[1] & 0x80)) { /* not a status byte */
if (ArgsLeft == NumArgs)
newMessage.data[1] = InBytes[1];
else
{
newMessage.data[2] = InBytes[1];
}
--ArgsLeft;
/* If MIDI message complete, then setup for running status mode
(another event of the same type without status byte).
*/
if ( !ArgsLeft ) {
if (MessageType(newMessage.data[0]) == (int) MIDI_PGM_CHANGE ||
MessageType(newMessage.data[0]) == (int) MIDI_CHN_PRESSURE)
{
ArgsLeft = 1;
}
else
{
ArgsLeft = 2;
}
newMessage.time = newTime - lastTime;
lastTime = newTime;
// Put newMessage in the circular buffer
midiBuffer[writeOffset] = newMessage;
writeOffset++;
if( writeOffset >= MIDI_BUFFER_SIZE )
writeOffset = 0;
break;
}
}
default:
break;
}
}
}
MIDIIO :: MIDIIO()
{
int err = 0;
_seqfd = 0;
#ifdef NONBLOCKING_MIDI
if((_seqfd = open(SEQUENCER_PATH, O_RDONLY+O_NONBLOCK, 0)) == -1) {
#else
if((_seqfd = open(SEQUENCER_PATH, O_RDONLY, 0)) == -1) {
#endif
fprintf(stderr,"Cannot open " SEQUENCER_PATH ". \n");
printf("Exiting MIDIIO Process.\n");
exit(0);
}
// Set up the circular buffer for the Midi Input Messages
midiBuffer = new MIDIMESSAGE[MIDI_BUFFER_SIZE];
readOffset = 0;
writeOffset = 0;
err = pthread_create(&midi_input_thread, NULL, midiInputThread, NULL);
if (err)
{
fprintf(stderr, "Unable to create MIDI input thread.\n");
printf("Exiting MIDIIO Process.\n");
exit(0);
}
}
MIDIIO :: ~MIDIIO()
{
if (_seqfd != 0) close(_seqfd);
delete [] midiBuffer;
}
int MIDIIO::nextMessage()
{
MIDIMESSAGE lastEvent;
unsigned long micros = 2000;
if ( readOffset == writeOffset ) return 0;
lastEvent = midiBuffer[readOffset];
readOffset++;
if ( readOffset >= MIDI_BUFFER_SIZE ) readOffset = 0;
messageType = (int) (lastEvent.data[0] & 0xf0);
channel = (int) (lastEvent.data[0] & 0x0f);
byteTwo = (float) lastEvent.data[1];
if (messageType == (int) MIDI_PITCH_BEND)
byteTwo = (float) lastEvent.data[2] + (byteTwo * NORM_7);
else
byteThree = (float) lastEvent.data[2];
deltaTime = (float) lastEvent.time / OSS_MIDI_CLOCK_RATE;
return messageType;
}
#elif (defined(__WINDS_REALTIME_) || defined(__WINMM_REALTIME_) )
/*************************************/
/* __WIN_REALTIME_ */
/*************************************/
#include <stdio.h>
#include "MIDIIO.h"
#define MIDI_NOTEON 0x90
#define MIDI_NOTEOFF 0x80
#define MIDI_POLYKEYPRESSURE 0xA0
#define MIDI_CHANNELPRESSURE 0xD0
#define MIDI_PROGRAMCHANGE 0xC0
#define MIDI_CONTROLCHANGE 0xB0
#define MIDI_PITCHBEND 0xE0
typedef struct {
DWORD data;
DWORD time;
} MIDIMESSAGE;
MIDIMESSAGE *midiBuffer;
static void CALLBACK midiInputCallback( HMIDIOUT hmin, UINT inputStatus,
DWORD instancePtr, DWORD midiMessage, DWORD timestamp)
{
MIDIMESSAGE newMessage;
switch (inputStatus) {
case MIM_OPEN:
#ifdef TESTING_MIDI_IN
printf("MIM_OPEN\n");
#endif
break;
case MIM_CLOSE:
#ifdef TESTING_MIDI_IN
printf("MIM_CLOSE\n");
#endif
break;
case MIM_DATA:
#ifdef TESTING_MIDI_IN
printf("MIM_DATA\n");
#endif
// Ignore Active Sensing messages
if ((midiMessage & 0xff) == 0xfe || (midiMessage & 0xff) == 0xf8) {
break;
}
newMessage.data = midiMessage;
newMessage.time = timestamp;
// Put newMessage in the circular buffer
midiBuffer[writeOffset] = newMessage;
writeOffset++;
if( writeOffset >= MIDI_BUFFER_SIZE )
writeOffset = 0;
break;
case MIM_ERROR:
fprintf(stderr,"Invalid MIDI message received!\n");
#ifdef TESTING_MIDI_IN
printf("MIM_ERROR\n");
#endif
break;
case MIM_LONGDATA:
/* System exclusive buffer is returned */
break;
case MIM_LONGERROR:
#ifdef TESTING_MIDI_IN
printf("MIM_LONGERROR\n");
#endif
break;
default:
break;
}
}
HMIDIIN hMidiIn ; // Handle to Midi Output Device
MIDIIO :: MIDIIO()
{
MMRESULT result;
UINT uDeviceID;
MIDIINCAPS deviceCaps;
UINT i;
char inputString[128];
uDeviceID = midiInGetNumDevs();
printf("%i MIDI Input Devices Available.\n",uDeviceID);
if (uDeviceID == 0) {
printf("Exiting MIDIIO Process.\n");
exit(0);
}
for (i=0; i<uDeviceID; i++) {
result = midiInGetDevCaps(i, &deviceCaps, sizeof(MIDIINCAPS));
printf("MIDI Device %d is %s.\n", i, deviceCaps.szPname);
}
if (uDeviceID > 1) {
printf("\nType the MIDI Device to open: ");
fgets(inputString, 128, stdin);
uDeviceID = (UINT) atoi(inputString);
}
else uDeviceID -= 1;
// Open the port and return any errors
result = midiInOpen(&hMidiIn, uDeviceID, (DWORD)&midiInputCallback, (DWORD)NULL, CALLBACK_FUNCTION);
if (result != MMSYSERR_NOERROR) {
fprintf(stderr,"Cannot open MIDI Input Device %d!\n", uDeviceID);
printf("Exiting MIDIIO Process.\n");
exit(0);
}
// Set up the circular buffer for the Midi Input Messages
midiBuffer = new MIDIMESSAGE[MIDI_BUFFER_SIZE];
readOffset = 0;
writeOffset = 0;
midiInStart( hMidiIn );
}
MIDIIO :: ~MIDIIO()
{
midiInReset( hMidiIn );
midiInStop( hMidiIn );
midiInClose( hMidiIn );
delete [] midiBuffer;
}
int MIDIIO :: nextMessage()
{
int status;
int byte1;
int byte2;
MIDIMESSAGE lastEvent;
static DWORD lastTime = 0;
static DWORD newTime = 0;
if ( readOffset == writeOffset ) return 0;
lastEvent = midiBuffer[readOffset];
readOffset++;
if ( readOffset >= MIDI_BUFFER_SIZE ) readOffset = 0;
status = (int) (lastEvent.data & 0xff);
byte1 = (int) (lastEvent.data & 0xff00) >> 8;
byte2 = (int) (lastEvent.data & 0xff0000) >> 16;
channel = (int) (status & 0x0f);
newTime = lastEvent.time;
deltaTime = (float) (newTime - lastTime) * 0.001;
lastTime = newTime;
if ((status == MIDI_PROGRAMCHANGE) ||
(status == MIDI_CHANNELPRESSURE))
{
messageType = status;
byteTwo = (float) byte1;
}
else if ((status == MIDI_NOTEON) || (status == MIDI_NOTEOFF) ||
(status == MIDI_CONTROLCHANGE) || (status == MIDI_POLYKEYPRESSURE))
{
messageType = status;
byteTwo = (float) byte1;
byteThree = (float) byte2;
}
else if (status == MIDI_PITCHBEND)
{
messageType = status;
byteTwo = (float) (byte1 * NORM_7);
byteTwo += (float) byte2;
}
else
{
messageType = -1;
}
return messageType;
}
#endif
void MIDIIO :: printMessage()
{
printf("type = %d, channel = %d, byte2 = %f, byte3 = %f\n",
this->getType(), this->getChannel(), this->getByteTwo(),
this->getByteThree());
}
int MIDIIO :: getType()
{
return messageType;
}
int MIDIIO :: getChannel()
{
return channel;
}
MY_FLOAT MIDIIO :: getByteTwo()
{
return byteTwo;
}
MY_FLOAT MIDIIO :: getByteThree()
{
return byteThree;
}
MY_FLOAT MIDIIO :: getDeltaTime()
{
return deltaTime;
}

View File

@@ -1,56 +0,0 @@
/******************************************/
/* MIDIIO.h */
/* Realtime MIDI I/O Object for STK, */
/* by Gary P. Scavone, 1998. */
/* Based in part on code by Perry */
/* Cook (SGI), Paul Leonard (Linux), */
/* the RoseGarden team (Linux), and */
/* Bill Putnam (Win95/NT). */
/* */
/* At the moment, this object only */
/* handles MIDI Input, though MIDI */
/* Output code can go here when someone */
/* decides they need it (and writes it). */
/* */
/* This object opens a MIDI Input device */
/* and parses MIDI data. Time stamp */
/* info is converted to deltaTime. */
/* MIDI data is stored as MY_FLOAT to */
/* conform with SKINI. */
/******************************************/
#if !defined(__MIDIIO_h)
#define __MIDIIO_h
#include "Object.h"
class MIDIIO : public Object
{
protected:
int messageType;
int channel;
float byteTwo;
float byteThree;
MY_FLOAT deltaTime;
public:
MIDIIO();
~MIDIIO();
void printMessage();
int nextMessage();
int getType();
int getChannel();
MY_FLOAT getByteTwo();
MY_FLOAT getByteThree();
MY_FLOAT getDeltaTime();
};
#if (defined(__WINDS_REALTIME_) || defined(__WINMM_REALTIME_) )
#include <windows.h>
#include <mmsystem.h>
static void CALLBACK midiInputCallback( HMIDIOUT hmin, UINT inputStatus,
DWORD instancePtr, DWORD midiMessage, DWORD timestamp);
#endif
#endif

View File

@@ -1,68 +0,0 @@
# STK98 Makefile - Global version for Unix systems which have GNU
# Makefile utilities installed. If this Makefile does not work on
# your system, try using the platform specific Makefiles (.sgi,
# .next, and .linux).
OS = $(shell uname)
O_FILES = Object.o Envelope.o ADSR.o Noise.o SubNoise.o \
RawWave.o RawWvIn.o RawLoop.o \
Modulatr.o Filter.o OneZero.o \
OnePole.o TwoZero.o TwoPole.o DCBlock.o \
BiQuad.o DLineA.o DLineL.o DLineN.o VoicMang.o \
FormSwep.o BowTabl.o JetTabl.o ReedTabl.o \
LipFilt.o Modal4.o FM4Op.o FM4Alg3.o FM4Alg4.o \
FM4Alg5.o FM4Alg6.o FM4Alg8.o Plucked2.o \
SamplFlt.o Sampler.o SKINI11.o Simple.o \
SingWave.o VoicForm.o FMVoices.o swapstuf.o \
\
Instrmnt.o Marimba.o Vibraphn.o AgogoBel.o Shakers.o \
Plucked.o Mandolin.o Clarinet.o Flute.o Moog1.o \
Brass.o Bowed.o Rhodey.o Wurley.o TubeBell.o \
HeavyMtl.o PercFlut.o BeeThree.o DrumSynt.o \
\
WvOut.o SndWvOut.o WavWvOut.o MatWvOut.o \
Reverb.o PRCRev.o JCRev.o NRev.o
RM = /bin/rm
ifeq ($(OS),NEXTSTEP) # These are for NeXT
CC = cc -arch m68k -arch i386 -Wall
INSTR = syntmono
endif
ifeq ($(OS),IRIX) # These are for SGI
INSTR = MD2SKINI syntmono
CC = CC -O # -g -fullwarn -D__SGI_CC__
O_FILES += RTWvOut.o RTSoundIO.o MIDIIO.o
LIBRARY = -L/usr/sgitcl/lib -laudio -lmd -lm
endif
ifeq ($(OS),Linux) # These are for Linux
INSTR = syntmono MD2SKINI
CC = gcc -O3 # -g -pg -O3
O_FILES += RTWvOut.o RTSoundIO.o MIDIIO.o
LIBRARY = -lpthread -lm
endif
.SUFFIXES: .cpp
.cpp.o: Object.h
$(CC) -c $*.cpp
all: $(INSTR)
syntmono: syntmono.cpp $(O_FILES)
$(CC) $(INCLUDE) -o syntmono syntmono.cpp $(O_FILES) $(LIBRARY)
MD2SKINI: MD2SKINI.cpp $(O_FILES)
$(CC) -o MD2SKINI MD2SKINI.cpp $(O_FILES) $(LIBRARY)
clean :
rm *.o
rm $(INSTR)
cleanIns :
rm $(INSTR)
strip :
strip $(INSTR)

View File

@@ -1,47 +0,0 @@
# STK98 Makefile - NeXTStep solo version
O_FILES = Object.o Envelope.o ADSR.o Noise.o SubNoise.o \
RawWave.o RawWvIn.o RawLoop.o \
Modulatr.o Filter.o OneZero.o \
OnePole.o TwoZero.o TwoPole.o DCBlock.o \
BiQuad.o DLineA.o DLineL.o DLineN.o VoicMang.o \
FormSwep.o BowTabl.o JetTabl.o ReedTabl.o \
LipFilt.o Modal4.o FM4Op.o FM4Alg3.o FM4Alg4.o \
FM4Alg5.o FM4Alg6.o FM4Alg8.o Plucked2.o \
SamplFlt.o Sampler.o SKINI11.o Simple.o \
SingWave.o VoicForm.o FMVoices.o swapstuf.o \
\
Instrmnt.o Marimba.o Vibraphn.o AgogoBel.o Shakers.o \
Plucked.o Mandolin.o Clarinet.o Flute.o Moog1.o \
Brass.o Bowed.o Rhodey.o Wurley.o TubeBell.o \
HeavyMtl.o PercFlut.o BeeThree.o DrumSynt.o \
\
WvOut.o SndWvOut.o WavWvOut.o MatWvOut.o \
Reverb.o PRCRev.o JCRev.o NRev.o
RM = /bin/rm
CC = cc -arch m68k -arch i386 -Wall
INSTR = syntmono
.SUFFIXES: .cpp
.cpp.o: Object.h
$(CC) -c $*.cpp
all: $(INSTR)
syntmono: syntmono.cpp $(O_FILES)
$(CC) $(INCLUDE) -o syntmono syntmono.cpp $(O_FILES) $(LIBRARY)
MD2SKINI: MD2SKINI.cpp $(O_FILES)
$(CC) -o MD2SKINI MD2SKINI.cpp $(O_FILES) $(LIBRARY)
clean :
rm *.o
rm $(INSTR)
cleanIns :
rm $(INSTR)
strip :
strip $(INSTR)

View File

@@ -1,68 +0,0 @@
# STK98 Makefile - Global version for Unix systems which have GNU
# Makefile utilities installed. If this Makefile does not work on
# your system, try using the platform specific Makefiles (.sgi,
# .next, and .linux).
OS = $(shell uname)
O_FILES = Object.o Envelope.o ADSR.o Noise.o SubNoise.o \
RawWave.o RawWvIn.o RawLoop.o \
Modulatr.o Filter.o OneZero.o \
OnePole.o TwoZero.o TwoPole.o DCBlock.o \
BiQuad.o DLineA.o DLineL.o DLineN.o VoicMang.o \
FormSwep.o BowTabl.o JetTabl.o ReedTabl.o \
LipFilt.o Modal4.o FM4Op.o FM4Alg3.o FM4Alg4.o \
FM4Alg5.o FM4Alg6.o FM4Alg8.o Plucked2.o \
SamplFlt.o Sampler.o SKINI11.o Simple.o \
SingWave.o VoicForm.o FMVoices.o swapstuf.o \
\
Instrmnt.o Marimba.o Vibraphn.o AgogoBel.o Shakers.o \
Plucked.o Mandolin.o Clarinet.o Flute.o Moog1.o \
Brass.o Bowed.o Rhodey.o Wurley.o TubeBell.o \
HeavyMtl.o PercFlut.o BeeThree.o DrumSynt.o \
\
WvOut.o SndWvOut.o WavWvOut.o MatWvOut.o \
Reverb.o PRCRev.o JCRev.o NRev.o
RM = /bin/rm
ifeq ($(OS),NEXTSTEP) # These are for NeXT
CC = cc -arch m68k -arch i386 -Wall
INSTR = syntmono
endif
ifeq ($(OS),IRIX) # These are for SGI
INSTR = MD2SKINI syntmono
CC = CC -O # -g -fullwarn -D__SGI_CC__
O_FILES += RTWvOut.o RTSoundIO.o MIDIIO.o
LIBRARY = -L/usr/sgitcl/lib -laudio -lmd -lm
endif
ifeq ($(OS),Linux) # These are for Linux
INSTR = syntmono MD2SKINI
CC = gcc -O3 # -g -pg -O3
O_FILES += RTWvOut.o RTSoundIO.o MIDIIO.o
LIBRARY = -lpthread -lm
endif
.SUFFIXES: .cpp
.cpp.o: Object.h
$(CC) -c $*.cpp
all: $(INSTR)
syntmono: syntmono.cpp $(O_FILES)
$(CC) $(INCLUDE) -o syntmono syntmono.cpp $(O_FILES) $(LIBRARY)
MD2SKINI: MD2SKINI.cpp $(O_FILES)
$(CC) -o MD2SKINI MD2SKINI.cpp $(O_FILES) $(LIBRARY)
clean :
rm *.o
rm $(INSTR)
cleanIns :
rm $(INSTR)
strip :
strip $(INSTR)

41
Makefile.in Normal file
View File

@@ -0,0 +1,41 @@
### Do not edit -- Generated by 'configure --with-whatever' from Makefile.in
RM = /bin/rm
REALTIME = @realtime@
all :
cd src && $(MAKE)
cd projects/demo && $(MAKE) libdemo
ifeq ($(REALTIME),yes)
cd projects/effects && $(MAKE) libeffects
cd projects/ragamatic && $(MAKE) libragamat
cd projects/eguitar && $(MAKE) libeguitar
endif
cd projects/examples && $(MAKE) -f libMakefile
clean :
$(RM) -f *~
cd src && $(MAKE) clean
cd projects/demo && $(MAKE) clean
ifeq ($(REALTIME),yes)
cd projects/effects && $(MAKE) clean
cd projects/ragamatic && $(MAKE) clean
cd projects/eguitar && $(MAKE) clean
endif
cd projects/examples && $(MAKE) clean
distclean: clean
$(RM) -rf config.log config.status autom4te.cache Makefile
cd src && $(MAKE) distclean
cd projects/demo && $(MAKE) distclean
ifeq ($(REALTIME),yes)
cd projects/effects && $(MAKE) distclean
cd projects/ragamatic && $(MAKE) distclean
cd projects/eguitar && $(MAKE) distclean
endif
cd projects/examples && $(MAKE) distclean
install:
$(MAKE) -C src install

View File

@@ -1,49 +0,0 @@
# STK98 Makefile - Linux solo version
O_FILES = Object.o Envelope.o ADSR.o Noise.o SubNoise.o \
RawWave.o RawWvIn.o RawLoop.o \
Modulatr.o Filter.o OneZero.o \
OnePole.o TwoZero.o TwoPole.o DCBlock.o \
BiQuad.o DLineA.o DLineL.o DLineN.o VoicMang.o \
FormSwep.o BowTabl.o JetTabl.o ReedTabl.o \
LipFilt.o Modal4.o FM4Op.o FM4Alg3.o FM4Alg4.o \
FM4Alg5.o FM4Alg6.o FM4Alg8.o Plucked2.o \
SamplFlt.o Sampler.o SKINI11.o Simple.o \
SingWave.o VoicForm.o FMVoices.o swapstuf.o \
\
Instrmnt.o Marimba.o Vibraphn.o AgogoBel.o Shakers.o \
Plucked.o Mandolin.o Clarinet.o Flute.o Moog1.o \
Brass.o Bowed.o Rhodey.o Wurley.o TubeBell.o \
HeavyMtl.o PercFlut.o BeeThree.o DrumSynt.o \
\
WvOut.o SndWvOut.o WavWvOut.o MatWvOut.o \
Reverb.o PRCRev.o JCRev.o NRev.o \
RTWvOut.o RTSoundIO.o MIDIIO.o
RM = /bin/rm
INSTR = syntmono MD2SKINI
CC = gcc -O3 # -g -pg -O3
LIBRARY = -lpthread -lm
.SUFFIXES: .cpp
.cpp.o: Object.h
$(CC) -c $*.cpp
all: $(INSTR)
syntmono: syntmono.cpp $(O_FILES)
$(CC) $(INCLUDE) -o syntmono syntmono.cpp $(O_FILES) $(LIBRARY)
MD2SKINI: MD2SKINI.cpp $(O_FILES)
$(CC) -o MD2SKINI MD2SKINI.cpp $(O_FILES) $(LIBRARY)
clean :
rm *.o
rm $(INSTR)
cleanIns :
rm $(INSTR)
strip :
strip $(INSTR)

View File

@@ -1,49 +0,0 @@
# STK98 Makefile - SGI solo version
O_FILES = Object.o Envelope.o ADSR.o Noise.o SubNoise.o \
RawWave.o RawWvIn.o RawLoop.o \
Modulatr.o Filter.o OneZero.o \
OnePole.o TwoZero.o TwoPole.o DCBlock.o \
BiQuad.o DLineA.o DLineL.o DLineN.o VoicMang.o \
FormSwep.o BowTabl.o JetTabl.o ReedTabl.o \
LipFilt.o Modal4.o FM4Op.o FM4Alg3.o FM4Alg4.o \
FM4Alg5.o FM4Alg6.o FM4Alg8.o Plucked2.o \
SamplFlt.o Sampler.o SKINI11.o Simple.o \
SingWave.o VoicForm.o FMVoices.o swapstuf.o \
\
Instrmnt.o Marimba.o Vibraphn.o AgogoBel.o Shakers.o \
Plucked.o Mandolin.o Clarinet.o Flute.o Moog1.o \
Brass.o Bowed.o Rhodey.o Wurley.o TubeBell.o \
HeavyMtl.o PercFlut.o BeeThree.o DrumSynt.o \
\
WvOut.o SndWvOut.o WavWvOut.o MatWvOut.o \
Reverb.o PRCRev.o JCRev.o NRev.o \
RTWvOut.o RTSoundIO.o MIDIIO.o
RM = /bin/rm
INSTR = MD2SKINI syntmono
CC = CC -O # -g -fullwarn -D__SGI_CC__
LIBRARY = -L/usr/sgitcl/lib -laudio -lmd -lm
.SUFFIXES: .cpp
.cpp.o: Object.h
$(CC) -c $*.cpp
all: $(INSTR)
syntmono: syntmono.cpp $(O_FILES)
$(CC) $(INCLUDE) -o syntmono syntmono.cpp $(O_FILES) $(LIBRARY)
MD2SKINI: MD2SKINI.cpp $(O_FILES)
$(CC) -o MD2SKINI MD2SKINI.cpp $(O_FILES) $(LIBRARY)
clean :
rm *.o
rm $(INSTR)
cleanIns :
rm $(INSTR)
strip :
strip $(INSTR)

View File

@@ -1,144 +0,0 @@
/********************************************/
/* Commuted Mandolin Subclass of enhanced */
/* dual plucked-string model */
/* by Perry Cook, 1995-96 */
/* Controls: CONTROL1 = bodySize */
/* CONTROL2 = pluckPosition */
/* CONTROL3 = loopGain */
/* MOD_WHEEL= deTuning */
/* */
/* Note: Commuted Synthesis, as with many */
/* other WaveGuide techniques, is covered */
/* by patents, granted, pending, and/or */
/* applied-for. Many are assigned to the */
/* Board of Trustees, Stanford University. */
/* For information, contact the Office of */
/* Technology Licensing, Stanford U. */
/********************************************/
#include "Mandolin.h"
#include "SKINI11.msg"
Mandolin :: Mandolin(MY_FLOAT lowestFreq) : Plucked2(lowestFreq)
{
int i;
soundfile[0] = new RawWave("rawwaves/mand1.raw");
soundfile[1] = new RawWave("rawwaves/mand2.raw");
soundfile[2] = new RawWave("rawwaves/mand3.raw");
soundfile[3] = new RawWave("rawwaves/mand4.raw");
soundfile[4] = new RawWave("rawwaves/mand5.raw");
soundfile[5] = new RawWave("rawwaves/mand6.raw");
soundfile[6] = new RawWave("rawwaves/mand7.raw");
soundfile[7] = new RawWave("rawwaves/mand8.raw");
soundfile[8] = new RawWave("rawwaves/mand9.raw");
soundfile[9] = new RawWave("rawwaves/mand10.raw");
soundfile[10] = new RawWave("rawwaves/mand11.raw");
soundfile[11] = new RawWave("rawwaves/mand12.raw");
for (i=0;i<12;i++) {
// soundfile[i]->normalize((MY_FLOAT) 0.1); /* Empirical hack here */
soundfile[i]->setLooping(0);
}
directBody = 1.0;
mic = 0;
dampTime = 0;
waveDone = 1;
}
Mandolin :: ~Mandolin()
{
}
void Mandolin :: pluck(MY_FLOAT amplitude)
{ /* this function gets interesting here, */
soundfile[mic]->reset(); /* because pluck may be longer than */
pluckAmp = amplitude; /* string length, so we just reset the */
/* soundfile and add in the pluck in */
/* the tick method. */
combDelay->setDelay(
(MY_FLOAT) 0.5 * pluckPos * lastLength); /* Set Pick Position */
/* which puts zeroes at pos*length */
dampTime = (long) lastLength; /* See tick method below */
waveDone = 0;
}
void Mandolin :: pluck(MY_FLOAT amplitude, MY_FLOAT position)
{
pluckPos = position; /* pluck position is zeroes at pos*length */
this->pluck(amplitude);
}
void Mandolin :: noteOn(MY_FLOAT freq, MY_FLOAT amp)
{
this->setFreq(freq);
this->pluck(amp);
#if defined(_debug_)
printf("Mandolin : NoteOn: Freq=%lf Amp=%lf\n",freq,amp);
#endif
}
void Mandolin :: setBodySize(MY_FLOAT size)
{
int i;
for (i=0;i<12;i++) {
soundfile[i]->setRate(size);
}
}
MY_FLOAT Mandolin :: tick()
{
MY_FLOAT temp = (MY_FLOAT) 0;
if (!waveDone) {
waveDone = soundfile[mic]->informTick(); /* as long as it goes . . . */
temp = soundfile[mic]->lastOut() * pluckAmp; /* scaled pluck excitation */
temp = temp - combDelay->tick(temp); /* with comb filtering */
}
if (dampTime>=0) { /* Damping hack to help avoid */
dampTime -= 1; /* overflow on replucking */
lastOutput = delayLine->tick( /* Calculate 1st delay */
filter->tick( /* filterered reflection */
temp + /* plus pluck excitation */
(delayLine->lastOut() * (MY_FLOAT) 0.7)));
lastOutput += delayLine2->tick( /* and 2nd delay */
filter2->tick( /* just like the 1st */
temp +
(delayLine2->lastOut() * (MY_FLOAT) 0.7))); /* that's the whole thing!! */
}
else { /* No damping hack after 1 period */
lastOutput = delayLine->tick( /* Calculate 1st delay */
filter->tick( /* filtered reflection */
temp + /* plus pluck excitation */
(delayLine->lastOut()
* loopGain)));
lastOutput += delayLine2->tick( /* and 2nd delay */
filter2->tick( /* just like the 1st */
temp +
(delayLine2->lastOut()
* loopGain)));
}
lastOutput *= (MY_FLOAT) 0.3 / 32768.0;
return lastOutput;
}
void Mandolin :: controlChange(int number, MY_FLOAT value)
{
#if defined(_debug_)
printf("Mandolin : ControlChange: Number=%i Value=%f\n",number,value);
#endif
if (number == __SK_BodySize_)
this->setBodySize(value * (MY_FLOAT) NORM_7 * (MY_FLOAT) 2.0);
else if (number == __SK_PickPosition_)
this->setPluckPos(value * (MY_FLOAT) NORM_7);
else if (number == __SK_StringDamping_)
this->setBaseLoopGain((MY_FLOAT) 0.97 + (value * (MY_FLOAT) NORM_7 * (MY_FLOAT) 0.03));
else if (number == __SK_StringDetune_)
this->setDetune((MY_FLOAT) 1.0 - (value * (MY_FLOAT) NORM_7 * (MY_FLOAT) 0.1));
else if (number == __SK_AfterTouch_)
this->pluck(value * (MY_FLOAT) NORM_7);
else if (number == 411) {
mic = (int) value % 12;
}
else {
printf("Mandolin : Undefined Control Number!! %i\n",number);
}
}

View File

@@ -1,44 +0,0 @@
/********************************************/
/* Commuted Mandolin Subclass of enhanced */
/* dual plucked-string model */
/* by Perry Cook, 1995-96 */
/* Controls: CONTROL1 = bodySize */
/* CONTROL2 = pluckPosition */
/* CONTROL3 = loopGain */
/* MOD_WHEEL= deTuning */
/* */
/* Note: Commuted Synthesis, as with many */
/* other WaveGuide techniques, is covered */
/* by patents, granted, pending, and/or */
/* applied-for. All are assigned to the */
/* Board of Trustees, Stanford University. */
/* For information, contact the Office of */
/* Technology Licensing, Stanford U. */
/********************************************/
#if !defined(__Mandolin_h)
#define __Mandolin_h
#include "Plucked2.h"
#include "RawWave.h"
class Mandolin : public Plucked2
{
protected:
RawWave *soundfile[12];
MY_FLOAT directBody;
int mic;
long dampTime;
int waveDone;
public:
Mandolin(MY_FLOAT lowestFreq);
virtual ~Mandolin();
void pluck(MY_FLOAT amplitude);
void pluck(MY_FLOAT amplitude,MY_FLOAT position);
virtual void noteOn(MY_FLOAT freq, MY_FLOAT amp);
void setBodySize(MY_FLOAT size);
virtual void controlChange(int number, MY_FLOAT value);
virtual MY_FLOAT tick();
};
#endif

View File

@@ -1,113 +0,0 @@
/*******************************************/
/* Marimba SubClass of Modal4 Instrument, */
/* by Perry R. Cook, 1995-96 */
/* */
/* Controls: CONTROL1 = stickHardness */
/* CONTROL2 = strikePosition*/
/* CONTROL3 = vibFreq */
/* MOD_WHEEL= vibAmt */
/*******************************************/
#include "Marimba.h"
#include "SKINI11.msg"
Marimba :: Marimba() : Modal4()
{
wave = new RawWave("rawwaves/marmstk1.raw");
wave->normalize();
wave->setRate((MY_FLOAT) 0.5); /* normal stick */
this->setRatioAndReson(0, (MY_FLOAT) 1.00,(MY_FLOAT) 0.9996); /* Set all 132.0 */
this->setRatioAndReson(1, (MY_FLOAT) 3.99,(MY_FLOAT) 0.9994); /* of our 523.0 */
this->setRatioAndReson(2,(MY_FLOAT) 10.65,(MY_FLOAT) 0.9994); /* default 1405.0 */
this->setRatioAndReson(3,-(MY_FLOAT) 2443.0,(MY_FLOAT) 0.999); /* resonances 2443.0 */
this->setFiltGain(0,(MY_FLOAT) 0.04); /* and */
this->setFiltGain(1,(MY_FLOAT) 0.01); /* gains */
this->setFiltGain(2,(MY_FLOAT) 0.01); /* for each */
this->setFiltGain(3,(MY_FLOAT) 0.008); /* resonance */
directGain = (MY_FLOAT) 0.1;
multiStrike = 0;
}
Marimba :: ~Marimba()
{
delete wave;
}
void Marimba :: setStickHardness(MY_FLOAT hardness)
{
stickHardness = hardness;
wave->setRate((MY_FLOAT) (0.25 * (MY_FLOAT) pow(4.0,stickHardness)));
masterGain = (MY_FLOAT) 0.1 + ((MY_FLOAT) 1.8 * stickHardness);
}
void Marimba :: setStrikePosition(MY_FLOAT position)
{
MY_FLOAT temp,temp2;
temp2 = position * PI;
strikePosition = position; /* Hack only first three modes */
temp = (MY_FLOAT) sin(temp2);
this->setFiltGain(0,(MY_FLOAT) 0.12 * temp); /* 1st mode function of pos. */
temp = (MY_FLOAT) sin(0.05 + (3.9 * temp2));
this->setFiltGain(1,(MY_FLOAT) -0.03 * temp); /* 2nd mode function of pos. */
temp = (MY_FLOAT) sin(-0.05 + (11 * temp2));
this->setFiltGain(2,(MY_FLOAT) 0.11 * temp); /* 3rd mode function of pos. */
}
void Marimba :: setModulationSpeed(MY_FLOAT mSpeed)
{
/* don't bother here, marimba decay so fast, mod doesn't make sense */
}
void Marimba :: setModulationDepth(MY_FLOAT mDepth)
{
}
void Marimba :: strike(MY_FLOAT amplitude)
{
int temp;
temp = rand() >> 10;
if (temp < 2) {
multiStrike = 1;
#if defined(_debug_)
printf("striking twice here!!\n");
#endif
}
else if (temp < 1) {
multiStrike = 2;
#if defined(_debug_)
printf("striking three times here!!!\n");
#endif
}
else multiStrike = 0;
Modal4::strike(amplitude);
}
void Marimba :: controlChange(int number, MY_FLOAT value)
{
#if defined(_debug_)
printf("Marimba : ControlChange: Number=%i Value=%f\n",number,value);
#endif
if (number == __SK_StickHardness_)
this->setStickHardness(value * NORM_7);
else if (number == __SK_StrikePosition_)
this->setStrikePosition(value * NORM_7);
else if (number == __SK_ModFrequency_)
vibr->setFreq((value * NORM_7 * (MY_FLOAT) 12.0));
else if (number == __SK_ModWheel_)
vibrGain = (value * NORM_7);
else if (number == __SK_AfterTouch_Cont_)
this->strike(value * NORM_7);
else {
printf("Marimba : Undefined Control Number!!\n");
}
}
MY_FLOAT Marimba :: tick()
{
if (multiStrike>0)
if (wave->isAllDone()) {
wave->reset();
multiStrike -= 1;
}
return Modal4::tick();
}

View File

@@ -1,32 +0,0 @@
/*******************************************/
/* Marimba SubClass of Modal4 Instrument, */
/* by Perry R. Cook, 1995-96 */
/* */
/* Controls: CONTROL1 = stickHardness */
/* CONTROL2 = strikePosition*/
/* CONTROL3 = vibFreq */
/* MOD_WHEEL= vibAmt */
/*******************************************/
#if !defined(__Marimba_h)
#define __Marimba_h
#include "Modal4.h"
class Marimba : public Modal4
{
private:
int multiStrike;
public:
Marimba();
~Marimba();
void setStickHardness(MY_FLOAT hardness);
void setStrikePosition(MY_FLOAT position);
void setModulationSpeed(MY_FLOAT mSpeed);
void setModulationDepth(MY_FLOAT mDepth);
virtual void strike(MY_FLOAT amplitude);
virtual void controlChange(int number, MY_FLOAT value);
virtual MY_FLOAT tick();
};
#endif

View File

@@ -1,214 +0,0 @@
/*******************************************/
/* Matlab MAT File Output Class, */
/* by Gary P. Scavone, 1998. */
/* This object creates a Matlab MAT-file */
/* structure and fills it with buffers of */
/* samples (doubles). */
/* */
/* The Matlab MAT-file format is not */
/* available to the general public. I */
/* spent several days reverse-engineering */
/* the file format to create this class. */
/* I couldn't figure out what a few of */
/* the header fields correspond to, but */
/* for the purposes of STK, this */
/* shouldn't create any problems. */
/*******************************************/
#include "MatWvOut.h"
/******** Matlab Matfile Header Struct *******/
struct matheaderform {
char heading[124];
short a[2];
long b[10];
/* There's more, but it's of variable length */
};
FILE *openMatFile(int chans,char *fileName) {
struct matheaderform hdr;
FILE *fd;
char tempName[128];
int i, namelen;
long longtmp, headsize;
strcpy(hdr.heading,"MATLAB 5.0 MAT-file, Generated by STK98. This file format was hacked by Gary P. Scavone, CCRMA, Stanford University, 1998.");
for (i=strlen(hdr.heading);i<124;i++) hdr.heading[i] = ' ';
hdr.a[0] = (short) 256;
hdr.a[1] = (short) 'M';
hdr.a[1] <<= 8;
hdr.a[1] += 'I';
hdr.b[0] = (long) 14;
hdr.b[1] = (long) 0; /* Size of file after this point to end (in bytes) */
hdr.b[2] = (long) 6;
hdr.b[3] = (long) 8;
hdr.b[4] = (long) 6;
hdr.b[5] = (long) 0;
hdr.b[6] = (long) 5;
hdr.b[7] = (long) 8;
hdr.b[8] = (long) chans; /* This is the number of rows */
hdr.b[9] = (long) 0; /* This is the number of columns */
strcpy(tempName,fileName);
strcat(tempName,".mat");
fd = fopen(tempName,"w+b");
if (!fd) {
printf("Couldn't create matfile %s !!!!!!!!\n",fileName);
exit(0);
}
printf("Creating matfile %s.\n", tempName);
fwrite(&hdr,sizeof(char),168,fd); /* Write the fixed portion of the header */
/* The next 4 bytes can be viewed as two shorts, but they are byteswapped
as a long. The first short value seems to always be one; the second
short will be the length of the variable name IF IT IS <= 4; if the
variable name length is >4, this short is zero and the length is put
in the next 4 bytes. The variable name length is limited to 31
characters (32 with a '\n'). The actual variable name then follows.
The variable name is "zero-padded" out to the following minimum
lengths (in bits): 4, 8, 16, 24, 32.
*/
namelen = strlen(fileName);
if (namelen > 31) { /* Check length of variable name (file name) */
fprintf(stderr, "File name too long ... should be 31 characters or less.\n");
fclose(fd);
exit(0);
}
if (namelen > 4) {
longtmp = 1;
fwrite(&longtmp,sizeof(long),1,fd);
fwrite(&namelen,sizeof(long),1,fd);
headsize = 44 + namelen;
} else {
longtmp = namelen;
longtmp <<= 16;
longtmp += 1;
fwrite(&longtmp,sizeof(long),1,fd);
headsize = 40 + namelen;
}
fwrite(fileName,sizeof(char),namelen,fd); /* Write the variable (file) name */
if (namelen < 5)
longtmp = 4 - namelen;
else if (namelen < 9)
longtmp = 8 - namelen;
else if (namelen < 17)
longtmp = 16 - namelen;
else if (namelen < 25)
longtmp = 24 - namelen;
else longtmp = 32 - namelen;
headsize += longtmp + 8; /* Add length (8) of following bytes */
fseek(fd,longtmp,SEEK_CUR);
longtmp = 9;
fwrite(&longtmp,sizeof(long),1,fd);
longtmp = 0; /* Size of data in bytes (8 per sample) */
fwrite(&longtmp,sizeof(long),1,fd);
fseek(fd,132,SEEK_SET);
fwrite(&headsize,sizeof(long),1,fd); /* Write header size ... will update at end */
fseek(fd,0,SEEK_END);
return fd;
}
MatWvOut :: MatWvOut(char *fileName)
{
chans = 1;
pan = 0.5;
fd = openMatFile(chans,fileName);
counter = 0;
totalCount = 0;
}
MatWvOut :: MatWvOut(int channels, char *fileName)
{
chans = channels;
pan = 0.5;
fd = openMatFile(chans,fileName);
counter = 0;
totalCount = 0;
}
MatWvOut :: ~MatWvOut()
{
double temp;
long headsize, temp1;
fwrite(data,sizeof(double),counter,fd);
temp = (double) totalCount * ONE_OVER_SRATE;
printf("%f Seconds Computed\n",temp);
fseek(fd,164,SEEK_SET);
fwrite(&totalCount,sizeof(long),1,fd); /* Write number of columns */
fseek(fd,132,SEEK_SET);
fread(&headsize,sizeof(long),1,fd);
temp1 = headsize;
headsize += (long) (totalCount * 8 * 2);
fseek(fd,132,SEEK_SET);
fwrite(&headsize,sizeof(long),1,fd); /* Write file size (minus some header info) */
fseek(fd,temp1+128,SEEK_SET);
temp1 = totalCount * 8 * 2;
fwrite(&temp1,sizeof(long),1,fd); /* Write data size (in bytes) */
fclose(fd);
}
long MatWvOut :: getCounter()
{
return totalCount;
}
MY_FLOAT MatWvOut :: getTime()
{
return (MY_FLOAT) totalCount * ONE_OVER_SRATE;
}
void MatWvOut :: tick(MY_FLOAT sample)
{
if (chans==1) {
data[counter++] = (double) (sample);
}
else {
data[counter++] = (double) (sample * (1.0 - pan));
data[counter++] = (double) (sample * pan);
}
totalCount += 1;
if (counter == MAT_BUFFER_SIZE) {
fwrite(data,sizeof(double),MAT_BUFFER_SIZE,fd);
counter = 0;
}
}
void MatWvOut :: tick(MY_FLOAT lsamp, MY_FLOAT rsamp)
{
if (chans==1) {
data[counter++] = (double) (lsamp + rsamp);
}
else {
data[counter++] = (double) (lsamp);
data[counter++] = (double) (rsamp);
}
totalCount += 1;
if (counter == MAT_BUFFER_SIZE) {
fwrite(data,sizeof(double),MAT_BUFFER_SIZE,fd);
counter = 0;
}
}
void MatWvOut :: setMonoPan(MY_FLOAT aPan)
{
pan = aPan;
if (aPan < 0.0) {
pan = 0.0;
printf("Pan < 0.0, correcting to 0.0\n");
}
if (aPan > 1.0) {
pan = 1.0;
printf("Pan > 1.0, correcting to 1.0\n");
}
}

View File

@@ -1,46 +0,0 @@
/*******************************************/
/* Matlab MAT File Output Class, */
/* by Gary P. Scavone, 1998. */
/* This object creates a Matlab MAT-file */
/* structure and fills it with buffers of */
/* samples (doubles). */
/* */
/* The Matlab MAT-file format is not */
/* available to the general public. I */
/* spent several days reverse-engineering */
/* the file format to create this class. */
/* I couldn't figure out what a few of */
/* the header fields correspond to, but */
/* for the purposes of STK, this */
/* shouldn't create any problems. */
/*******************************************/
#include "Object.h"
#include "WvOut.h"
#if !defined(__MatWvOut_h)
#define __MatWvOut_h
#define MAT_BUFFER_SIZE 1024
class MatWvOut : public WvOut
{
protected:
FILE *fd;
double data[MAT_BUFFER_SIZE]; /* not MY_FLOAT because MAT uses doubles */
long counter;
long totalCount;
int chans;
MY_FLOAT pan;
public:
MatWvOut(char *infileName);
MatWvOut(int channels, char *infileName);
~MatWvOut();
long getCounter();
MY_FLOAT getTime();
void setMonoPan(MY_FLOAT aPan);
void tick(MY_FLOAT sample);
void tick(MY_FLOAT lsamp, MY_FLOAT rsamp);
};
#endif // defined(__MatWvOut_h)

View File

@@ -1,186 +0,0 @@
/*******************************************/
/* 4 Resonance Modal Synthesis Instrument */
/* by Perry R. Cook, 1995-96 */
/* This instrument contains an excitation */
/* wavetable, an envelope, and four reso- */
/* nances (Non-Sweeping BiQuad Filters). */
/*******************************************/
#include "Modal4.h"
Modal4 :: Modal4()
{
envelope = new Envelope;
/* We don't make the excitation wave here yet, */
/* because we don't know what it's going to be. */
filters[0] = new BiQuad;
filters[1] = new BiQuad;
filters[2] = new BiQuad;
filters[3] = new BiQuad;
onepole = new OnePole;
vibr = new RawLoop("rawwaves/sinewave.raw");
vibr->normalize();
vibr->setFreq((MY_FLOAT) 6.0);
vibrGain = (MY_FLOAT) 0.05;
directGain = (MY_FLOAT) 0.0;
masterGain = (MY_FLOAT) 1.0;
baseFreq = (MY_FLOAT) 440.0;
this->setRatioAndReson(0,(MY_FLOAT) 1.00,(MY_FLOAT) 0.9997); /* Set some */
this->setRatioAndReson(1,(MY_FLOAT) 1.30,(MY_FLOAT) 0.9997); /* silly */
this->setRatioAndReson(2,(MY_FLOAT) 1.77,(MY_FLOAT) 0.9997); /* default */
this->setRatioAndReson(3,(MY_FLOAT) 2.37,(MY_FLOAT) 0.9997); /* values here */
this->setFiltGain(0,(MY_FLOAT) 0.01);
this->setFiltGain(1,(MY_FLOAT) 0.01);
this->setFiltGain(2,(MY_FLOAT) 0.01);
this->setFiltGain(3,(MY_FLOAT) 0.01);
this->clear();
filters[0]->setEqualGainZeroes();
filters[1]->setEqualGainZeroes();
filters[2]->setEqualGainZeroes();
filters[3]->setEqualGainZeroes();
stickHardness = (MY_FLOAT) 0.5;
strikePosition = (MY_FLOAT) 0.561;
}
Modal4 :: ~Modal4()
{
delete envelope;
delete filters[0];
delete filters[1];
delete filters[2];
delete filters[3];
delete onepole;
delete vibr;
}
void Modal4 :: clear()
{
onepole->clear();
filters[0]->clear();
filters[1]->clear();
filters[2]->clear();
filters[3]->clear();
}
void Modal4 :: setFreq(MY_FLOAT frequency)
{
baseFreq = frequency;
this->setRatioAndReson(0,ratios[0],resons[0]);
this->setRatioAndReson(1,ratios[1],resons[1]);
this->setRatioAndReson(2,ratios[2],resons[2]);
this->setRatioAndReson(3,ratios[3],resons[3]);
}
#include <stdio.h>
void Modal4 :: setRatioAndReson(int whichOne, MY_FLOAT ratio,MY_FLOAT reson)
{
MY_FLOAT temp;
if (ratio*baseFreq < SRATE_OVER_TWO) {
ratios[whichOne] = ratio;
}
else {
temp = ratio;
while (temp*baseFreq > SRATE_OVER_TWO) temp *= (MY_FLOAT) 0.5;
ratios[whichOne] = temp;
#if defined(_debug_)
printf("Modal4 : Aliasing would occur here, correcting.\n");
#endif
}
resons[whichOne] = reson;
if (ratio<0)
temp = -ratio;
else
temp = ratio*baseFreq;
filters[whichOne]->setFreqAndReson(temp,reson);
}
void Modal4 :: setMasterGain(MY_FLOAT aGain)
{
masterGain = aGain;
}
void Modal4 :: setDirectGain(MY_FLOAT aGain)
{
directGain = aGain;
}
void Modal4 :: setFiltGain(int whichOne, MY_FLOAT gain)
{
filters[whichOne]->setGain(gain);
}
void Modal4 :: strike(MY_FLOAT amplitude)
{
int i;
MY_FLOAT temp;
envelope->setRate((MY_FLOAT) 1.0);
envelope->setTarget(amplitude);
onepole->setPole((MY_FLOAT) 1.0 - amplitude);
envelope->tick();
wave->reset();
for (i=0;i<4;i++) {
if (ratios[i] < 0)
temp = -ratios[i];
else
temp = ratios[i] * baseFreq;
filters[i]->setFreqAndReson(temp,resons[i]);
}
}
void Modal4 :: noteOn(MY_FLOAT freq, MY_FLOAT amp)
{
this->strike(amp);
this->setFreq(freq);
#if defined(_debug_)
printf("Modal4 : NoteOn: Freq=%lf Amp=%lf\n",freq,amp);
#endif
}
void Modal4 :: noteOff(MY_FLOAT amp) /* This calls damp, but inverts the */
{ /* meaning of amplitude. */
this->damp((MY_FLOAT) 1.0 - (amp * (MY_FLOAT) 0.03)); /* (high amplitude means fast damping) */
#if defined(_debug_)
printf("Modal4 : NoteOff: Amp=%lf\n",amp);
#endif
}
void Modal4 :: damp(MY_FLOAT amplitude)
{
int i;
MY_FLOAT temp;
for (i=0;i<4;i++) {
if (ratios[i] < 0)
temp = -ratios[i];
else
temp = ratios[i] * baseFreq;
filters[i]->setFreqAndReson(temp,resons[i]*amplitude);
}
}
void Modal4 :: controlChange(int number, MY_FLOAT value)
{
}
MY_FLOAT Modal4 :: tick()
{
MY_FLOAT temp,temp2;
temp = masterGain * onepole->tick(wave->tick() * envelope->tick());
temp2 = filters[0]->tick(temp);
temp2 += filters[1]->tick(temp);
temp2 += filters[2]->tick(temp);
temp2 += filters[3]->tick(temp);
temp2 = temp2 - (temp2 * directGain);
temp2 += directGain * temp;
if (vibrGain != 0.0) {
temp = (MY_FLOAT) 1.0 + (vibr->tick() * vibrGain); /* Calculate AM */
temp2 = temp * temp2; /* and apply to master out */
}
lastOutput = temp2 * (MY_FLOAT) 2.0;
return lastOutput;
}

View File

@@ -1,52 +0,0 @@
/*******************************************/
/* 4 Resonance Modal Synthesis Instrument */
/* by Perry R. Cook, 1995-96 */
/* This instrument contains an excitation */
/* wavetable, an envelope, and four reso- */
/* nances (Non-Sweeping BiQuad Filters). */
/*******************************************/
#if !defined(__Modal4_h)
#define __Modal4_h
#include "Instrmnt.h"
#include "Envelope.h"
#include "RawWave.h"
#include "RawLoop.h"
#include "BiQuad.h"
#include "OnePole.h"
class Modal4 : public Instrmnt
{
protected:
Envelope *envelope;
RawWave *wave;
BiQuad *filters[4];
OnePole *onepole;
RawLoop *vibr;
MY_FLOAT vibrGain;
MY_FLOAT masterGain;
MY_FLOAT directGain;
MY_FLOAT stickHardness;
MY_FLOAT strikePosition;
MY_FLOAT baseFreq;
MY_FLOAT ratios[4];
MY_FLOAT resons[4];
public:
Modal4();
virtual ~Modal4();
void clear();
virtual void setFreq(MY_FLOAT frequency);
void setRatioAndReson(int whichOne, MY_FLOAT ratio, MY_FLOAT reson);
void setMasterGain(MY_FLOAT aGain);
void setDirectGain(MY_FLOAT aGain);
void setFiltGain(int whichOne, MY_FLOAT gain);
virtual void strike(MY_FLOAT amplitude);
virtual void noteOn(MY_FLOAT freq, MY_FLOAT amp);
virtual void noteOff(MY_FLOAT amp);
void damp(MY_FLOAT amplitude);
virtual void controlChange(int number, MY_FLOAT value);
virtual MY_FLOAT tick();
};
#endif

View File

@@ -1,83 +0,0 @@
/*******************************************/
/* Modulator Class, Perry R. Cook, 1995-96*/
/* This Object combines random and */
/* periodic modulations to give a nice */
/* natural human modulation function. */
/*******************************************/
#define POLE_POS (MY_FLOAT) 0.999
#define RND_SCALE (MY_FLOAT) 10.0
#include "Modulatr.h"
Modulatr :: Modulatr()
{
vibwave = new RawLoop("rawwaves/sinewave.raw");
vibwave->normalize();
vibwave->setFreq((MY_FLOAT) 6.0);
vibAmt = (MY_FLOAT) 0.04;
noise = new SubNoise(330);
rndAmt = (MY_FLOAT) 0.005;
onepole = new OnePole;
onepole->setPole(POLE_POS);
onepole->setGain(rndAmt * RND_SCALE);
}
Modulatr :: ~Modulatr()
{
delete vibwave;
delete noise;
delete onepole;
}
void Modulatr :: reset()
{
lastOutput = (MY_FLOAT) 0.0;
}
void Modulatr :: setVibFreq(MY_FLOAT vibFreq)
{
vibwave->setFreq(vibFreq);
}
void Modulatr :: setVibAmt(MY_FLOAT vibAmount)
{
vibAmt = vibAmount;
}
void Modulatr :: setRndAmt(MY_FLOAT rndAmount)
{
rndAmt = rndAmount;
onepole->setGain(RND_SCALE * rndAmt);
}
MY_FLOAT Modulatr :: tick()
{
lastOutput = vibAmt * vibwave->tick(); /* Compute periodic and */
lastOutput += onepole->tick(noise->tick()); /* random modulations */
return lastOutput;
}
MY_FLOAT Modulatr :: lastOut()
{
return lastOutput;
}
/************ Test Main Program *****************/
/*
void main()
{
Modulatr testMod;
FILE *fd;
short data;
long i;
fd = fopen("test.raw","wb");
for (i=0;i<20000;i++) {
data = testMod.tick() * 32000.0;
fwrite(&data,2,1,fd);
}
fclose(fd);
}
*/

View File

@@ -1,36 +0,0 @@
/*******************************************/
/* Modulator Class, Perry R. Cook, 1995-96*/
/* This Object combines random and */
/* periodic modulations to give a nice */
/* natural human modulation function. */
/*******************************************/
#if !defined(__Modulatr_h)
#define __Modulatr_h
#include "Object.h"
#include "RawLoop.h"
#include "SubNoise.h"
#include "OnePole.h"
class Modulatr : public Object
{
protected:
RawLoop *vibwave;
SubNoise *noise;
OnePole *onepole;
MY_FLOAT vibAmt;
MY_FLOAT rndAmt;
MY_FLOAT lastOutput;
public:
Modulatr();
~Modulatr();
void reset();
void setVibFreq(MY_FLOAT vibFreq);
void setVibAmt(MY_FLOAT vibAmount);
void setRndAmt(MY_FLOAT rndAmount);
MY_FLOAT tick();
MY_FLOAT lastOut();
};
#endif

107
Moog1.cpp
View File

@@ -1,107 +0,0 @@
/******************************************/
/* Test Sampler Subclass of */
/* Sampling Synthesizer Class */
/* by Perry R. Cook, 1995-96 */
/* */
/* Controls: CONTROL1 = filterQ */
/* CONTROL2 = filterRate */
/* CONTROL3 = vibFreq */
/* MOD_WHEEL= vibAmt */
/******************************************/
#include "Moog1.h"
#include "SKINI11.msg"
Moog1 :: Moog1() : SamplFlt()
{
attacks[0] = new RawWave("rawwaves/mandpluk.raw");
loops[0] = new RawLoop("rawwaves/impuls20.raw");
loops[1] = new RawLoop("rawwaves/sinewave.raw"); /* Steal one for vibrato */
attacks[0]->normalize();
loops[0]->normalize();
loops[1]->normalize();
loops[1]->setFreq((MY_FLOAT) 6.122);
adsr->setAllTimes((MY_FLOAT) 0.001,(MY_FLOAT) 1.5,(MY_FLOAT) 0.6,(MY_FLOAT) 0.250);
filterQ = (MY_FLOAT) 0.85;
filterRate = (MY_FLOAT) 0.0001;
modDepth = (MY_FLOAT) 0.0;
}
Moog1 :: ~Moog1()
{
delete attacks[0];
delete loops[0];
delete loops[1];
}
void Moog1 :: setFreq(MY_FLOAT frequency)
{
baseFreq = frequency;
attacks[0]->setFreq(baseFreq * (MY_FLOAT) 0.01);
loops[0]->setFreq(baseFreq);
}
void Moog1 :: noteOn(MY_FLOAT freq, MY_FLOAT amp)
{
MY_FLOAT temp;
this->setFreq(freq);
this->keyOn();
attackGain = amp * (MY_FLOAT) 0.5;
loopGain = amp;
temp = filterQ + (MY_FLOAT) 0.05;
filters[0]->setStates((MY_FLOAT) 2000.0,temp,(MY_FLOAT) 2.0 * ((MY_FLOAT) 1.0 - temp));
filters[1]->setStates((MY_FLOAT) 2000.0,temp,(MY_FLOAT) 2.0 * ((MY_FLOAT) 1.0 - temp));
temp = filterQ + (MY_FLOAT) 0.099;
filters[0]->setTargets((MY_FLOAT) freq,temp,(MY_FLOAT) 2.0 * ((MY_FLOAT) 1.0 - temp));
filters[1]->setTargets((MY_FLOAT) freq,temp,(MY_FLOAT) 2.0 * ((MY_FLOAT) 1.0 - temp));
filters[0]->setSweepRate(filterRate * (MY_FLOAT) 22050.0 / SRATE);
filters[1]->setSweepRate(filterRate * (MY_FLOAT) 22050.0 / SRATE);
#if defined(_debug_)
printf("Moog1 : NoteOn: Freq=%lf Amp=%lf\n",freq,amp);
#endif
}
void Moog1 :: setModulationSpeed(MY_FLOAT mSpeed)
{
loops[1]->setFreq(mSpeed);
}
void Moog1 :: setModulationDepth(MY_FLOAT mDepth)
{
modDepth = mDepth * (MY_FLOAT) 0.5;
}
void Moog1 :: controlChange(int number, MY_FLOAT value)
{
#if defined(_debug_)
printf("Moog1 : ControlChange: Number=%i Value=%f\n",number,value);
#endif
if (number == __SK_FilterQ_)
filterQ = (MY_FLOAT) 0.80 + ((MY_FLOAT) 0.1 * value * NORM_7);
else if (number == __SK_FilterSweepRate_)
filterRate = (value * NORM_7 * (MY_FLOAT) 0.0002);
else if (number == __SK_ModFrequency_)
this->setModulationSpeed(value * NORM_7 * (MY_FLOAT) 12.0);
else if (number == __SK_ModWheel_)
this->setModulationDepth(value * NORM_7);
else if (number == __SK_AfterTouch_Cont_)
adsr->setTarget(value * NORM_7);
else {
printf("Moog1 : Undefined Control Number!!\n");
}
}
MY_FLOAT Moog1 :: tick()
{
MY_FLOAT temp;
if (modDepth!=0.0) {
temp = loops[1]->tick() * modDepth;
loops[0]->setFreq(baseFreq * ((MY_FLOAT) 1.0 + temp));
}
lastOutput = SamplFlt :: tick();
return lastOutput;
}

34
Moog1.h
View File

@@ -1,34 +0,0 @@
/******************************************/
/* Moog1 Subclass of */
/* Sampling Synthesizer Class */
/* by Perry R. Cook, 1995-96 */
/* */
/* Controls: CONTROL1 = filterQ */
/* CONTROL2 = filterRate */
/* CONTROL3 = vibFreq */
/* MOD_WHEEL= vibAmt */
/******************************************/
#if !defined(__Moog1_h)
#define __Moog1_h
#include "SamplFlt.h"
class Moog1 : public SamplFlt
{
private:
MY_FLOAT modDepth;
MY_FLOAT filterQ;
MY_FLOAT filterRate;
public:
Moog1();
~Moog1();
virtual void setFreq(MY_FLOAT frequency);
virtual void noteOn(MY_FLOAT freq, MY_FLOAT amp);
void setModulationSpeed(MY_FLOAT mSpeed);
void setModulationDepth(MY_FLOAT mDepth);
virtual void controlChange(int number, MY_FLOAT value);
virtual MY_FLOAT tick();
};
#endif

138
NRev.cpp
View File

@@ -1,138 +0,0 @@
/******************************************/
/* NRev Reverb Subclass */
/* by Tim Stilson, 1998 */
/* based on CLM NRev */
/* Integrated into STK by Gary Scavone */
/* */
/* This is based on some of the famous */
/* Stanford CCRMA reverbs (NRev, KipRev) */
/* all based on the the Chowning/Moorer/ */
/* Schroeder reverberators, which use */
/* networks of simple allpass and comb */
/* delay filters. This particular */
/* arrangement consists of 6 comb */
/* filters in parallel, followed by 3 */
/* allpass filters, a lowpass filter, */
/* and another allpass in series, */
/* followed by two allpass filters in */
/* parallel with corresponding right and */
/* left outputs. */
/******************************************/
#include "NRev.h"
NRev :: NRev(MY_FLOAT T60)
{
int lens[15]={1433,1601,1867,2053,2251,2399,347,113,37,59,53,43,37,29,19};
double srscale= SRATE / 25641.0;
int val;
int i;
for (i=0; i<15; i++)
{
val = (int)floor(srscale*lens[i]);
if ((val & 1) == 0) val++;
while (!this->isprime(val)) val+=2;
lens[i]=val;
}
for (i=0; i<6; i++)
{
CdelayLine[i] = new DLineN((long) (lens[i]) + 2);
CdelayLine[i]->setDelay((long) (lens[i]));
combCoef[i] = pow(10,(-3 * lens[i] / (T60 * SRATE)));
}
for (i=0; i<8; i++)
{
APdelayLine[i] = new DLineN((long) (lens[i+6]) + 2);
APdelayLine[i]->setDelay((long) (lens[i+6]));
}
allPassCoeff = 0.7;
effectMix = 0.3;
this->clear();
}
NRev :: ~NRev()
{
int i;
for (i=0; i<6; i++) delete CdelayLine[i];
for (i=0; i<8; i++) delete APdelayLine[i];
}
void NRev :: clear()
{
int i;
for (i=0; i<6; i++) CdelayLine[i]->clear();
for (i=0; i<8; i++) APdelayLine[i]->clear();
lastOutL = 0.0;
lastOutR = 0.0;
lpLastout = 0.0;
}
void NRev :: setEffectMix(MY_FLOAT mix)
{
effectMix = mix;
}
MY_FLOAT NRev :: lastOutput()
{
return (lastOutL + lastOutR) * 0.5;
}
MY_FLOAT NRev :: lastOutputL()
{
return lastOutL;
}
MY_FLOAT NRev :: lastOutputR()
{
return lastOutR;
}
MY_FLOAT NRev :: tick(MY_FLOAT input)
{
MY_FLOAT temp,temp0,temp1,temp2,temp3;
int i;
temp0 = 0.0;
for (i=0; i<6; i++)
{
temp = input + (combCoef[i] * CdelayLine[i]->lastOut());
temp0 += CdelayLine[i]->tick(temp);
}
for (i=0; i<3; i++)
{
temp = APdelayLine[i]->lastOut();
temp1 = allPassCoeff * temp;
temp1 += temp0;
APdelayLine[i]->tick(temp1);
temp0 = -(allPassCoeff * temp1) + temp;
}
lpLastout = 0.7*lpLastout + 0.3*temp0; // onepole LP filter
temp = APdelayLine[3]->lastOut();
temp1 = allPassCoeff * temp;
temp1 += lpLastout;
APdelayLine[3]->tick(temp1);
temp1 = -(allPassCoeff * temp1) + temp;
temp = APdelayLine[4]->lastOut();
temp2 = allPassCoeff * temp;
temp2 += temp1;
APdelayLine[4]->tick(temp2);
lastOutL = effectMix*(-(allPassCoeff * temp2) + temp);
temp = APdelayLine[5]->lastOut();
temp3 = allPassCoeff * temp;
temp3 += temp1;
APdelayLine[5]->tick(temp3);
lastOutR = effectMix*(-(allPassCoeff * temp3) + temp);
temp = (1.0 - effectMix) * input;
lastOutL += temp;
lastOutR += temp;
return (lastOutL + lastOutR) * 0.5;
}

52
NRev.h
View File

@@ -1,52 +0,0 @@
/******************************************/
/* NRev Reverb Subclass */
/* by Tim Stilson, 1998 */
/* based on CLM NRev */
/* Integrated into STK by Gary Scavone */
/* */
/* This is based on some of the famous */
/* Stanford CCRMA reverbs (NRev, KipRev) */
/* all based on the the Chowning/Moorer/ */
/* Schroeder reverberators, which use */
/* networks of simple allpass and comb */
/* delay filters. This particular */
/* arrangement consists of 6 comb */
/* filters in parallel, followed by 3 */
/* allpass filters, a lowpass filter, */
/* and another allpass in series, */
/* followed by two allpass filters in */
/* parallel with corresponding right and */
/* left outputs. */
/******************************************/
#if !defined(__NRev_h)
#define __NRev_h
#include "Object.h"
#include "Reverb.h"
#include "DLineN.h"
class NRev : public Reverb
{
protected:
DLineN *APdelayLine[8];
DLineN *CdelayLine[6];
MY_FLOAT allPassCoeff;
MY_FLOAT combCoef[6];
MY_FLOAT lpLastout;
MY_FLOAT lastOutL;
MY_FLOAT lastOutR;
MY_FLOAT effectMix;
public:
NRev(MY_FLOAT T60);
~NRev();
void clear();
void setEffectMix(MY_FLOAT mix);
MY_FLOAT lastOutput();
MY_FLOAT lastOutputL();
MY_FLOAT lastOutputR();
MY_FLOAT tick(MY_FLOAT input);
};
#endif

View File

@@ -1,53 +0,0 @@
/*******************************************/
/* Noise Generator Class, */
/* by Perry R. Cook, 1995-96 */
/* White noise as often as you like. */
/*******************************************/
#include "Noise.h"
#ifdef __NeXT_
#include <libc.h>
#endif
#if defined(__OS_Win_) /* For Windows95 or NT */
#define ONE_OVER_RANDLIMIT 0.00006103516
#else /* This is for Linux, NeXT and SGI */
#define ONE_OVER_RANDLIMIT 0.00000000093132258
#endif
Noise :: Noise() : Object()
{
lastOutput = (MY_FLOAT) 0.0;
}
Noise :: ~Noise()
{
}
MY_FLOAT Noise :: tick()
{
/* THIS ONE IS WIN95 */
#if defined(__OS_Win_) /* For Windows95 or NT */
lastOutput = (MY_FLOAT) (rand() - 16383);
#else /* This is for Linux, NeXT and SGI */
lastOutput = (MY_FLOAT) random() - 1073741823.0;
#endif
lastOutput *= (MY_FLOAT) ONE_OVER_RANDLIMIT;
return lastOutput;
}
MY_FLOAT Noise :: lastOut()
{
return lastOutput;
}
/************ Test Main ************************/
/*
void main()
{
long i;
Noise test;
for (i=0;i<20;i++) printf("%lf\n",test.tick());
}
*/

23
Noise.h
View File

@@ -1,23 +0,0 @@
/*******************************************/
/* Noise Generator Class, */
/* by Perry R. Cook, 1995-96 */
/* White noise as often as you like. */
/*******************************************/
#if !defined(__Noise_h)
#define __Noise_h
#include "Object.h"
class Noise : public Object
{
protected:
MY_FLOAT lastOutput;
public:
Noise();
virtual ~Noise();
MY_FLOAT tick();
MY_FLOAT lastOut();
};
#endif

View File

@@ -1,23 +0,0 @@
/*******************************************/
/* Object Class, by Perry R. Cook, 1995-96*/
/* This is mostly here for compatibility */
/* with Objective C. We'll also stick */
/* global defines here, so everyone will */
/* see them. */
/*******************************************/
#include "Object.h"
// #include "byteswap.c"
/* This is just here for compatibility and convenience,
so there's no need to do any real calculations.
I do set up some redefinable variables here. */
Object :: Object()
{
}
Object :: ~Object()
{
}

133
Object.h
View File

@@ -1,133 +0,0 @@
/*********************************************/
/* Object Class, by Perry R. Cook, 1995-96 */
/* This is mostly here for compatibility */
/* with Objective C. We'll also stick */
/* global defines here, so everyone will */
/* see them. */
/*********************************************/
#if !defined(__Object_h)
#define __Object_h
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
class Object
{
public:
protected:
Object();
virtual ~Object();
};
/* #define __OS_NeXT_ */
#define __OS_IRIX_
/* #define __OS_Linux_ */
/* #define __OS_Win_ */
#if defined(__OS_NeXT_) /* For NeXTStep - Black or White Hardware */
#define __NeXT_
#elif defined(__OS_IRIX_) /* For SGI */
#define __SGI_REALTIME_
typedef int bool;
#elif defined(__OS_Linux_) /* For Linux */
#define __USS_REALTIME_
#define __LITTLE_ENDIAN__
#elif defined(__OS_Win_) /* For Windows95 or NT */
#define __WINDS_REALTIME_ /* For Direct Sound API */
/* #define __WINMM_REALTIME_ */ /* For Win MM API */
#define __SOCKET
#define __LITTLE_ENDIAN__
#endif
/* Real-time output buffer size. If clicks are occuring in the
* output sound stream, a larger buffer size may help. Larger
* buffer sizes, however, produce more latency between input and
* output.
*/
#define RT_BUFFER_SIZE 256
/* This sets the maximum number of simultaneous
* (within a buffer) MIDI messages that can be
* serviced before messages begin to be lost or
* overwritten. It should be a function of
* RT_BUFFER_SIZE
*/
#define MAX_IN_STRINGS 25
/* SRATE here is 44100, others are derived accordingly */
#define SRATE (MY_FLOAT) 44100.0
#define SRATE_OVER_TWO (MY_FLOAT) 22050.0
#define ONE_OVER_SRATE (MY_FLOAT) 0.00002267573696
#define RATE_NORM (MY_FLOAT) 0.5
#define TWO_PI_OVER_SRATE (MY_FLOAT) 0.0001424758573
/* SRATE here is 22050, others are derived accordingly */
/*
#define SRATE (MY_FLOAT) 22050.0
#define SRATE_OVER_TWO (MY_FLOAT) 11025.0
#define ONE_OVER_SRATE (MY_FLOAT) 0.00004535147392
#define RATE_NORM (MY_FLOAT) 1.0
#define TWO_PI_OVER_SRATE (MY_FLOAT) 0.0002849517146
*/
/* SRATE here is 16000, others are derived accordingly */
/*
#define SRATE (MY_FLOAT) 16000.0
#define SRATE_OVER_TWO (MY_FLOAT) 8000.0
#define ONE_OVER_SRATE (MY_FLOAT) 0.0000625
#define RATE_NORM (MY_FLOAT) 1.375
#define TWO_PI_OVER_SRATE (MY_FLOAT) 0.000392699
*/
/* SRATE here is 8k, others are derived accordingly */
/*
#define SRATE (MY_FLOAT) 8000.0
#define SRATE_OVER_TWO (MY_FLOAT) 4000
#define ONE_OVER_SRATE (MY_FLOAT) 0.00012500000000
#define RATE_NORM (MY_FLOAT) 2.75625
#define TWO_PI_OVER_SRATE (MY_FLOAT) 0.0002849517146
*/
/* Yer Basic Trigonometric constants */
#if !defined(PI)
#define PI (MY_FLOAT) 3.14159265359
#endif
#define TWO_PI (MY_FLOAT) 6.28318530718
#define ONE_OVER_TWO_PI (MY_FLOAT) 0.15915494309
#define SQRT_TWO 1.414213562
/* States for Envelopes, etc. */
#define ATTACK 0
#define DECAY 1
#define SUSTAIN 2
#define RELEASE 3
/* Machine dependent stuff, possibly useful for optimization.
* For example, changing double to float here increasesf
* performance (speed) by a whopping 4-6% on 486-flavor machines.
* BUT!! a change from float to double here increases speed by
* 30% or so on SGI machines.
*/
#define MY_FLOAT double
#define MY_FLOAT_SIZE 8
/*
#define MY_FLOAT float
#define MY_FLOAT_SIZE 4
*/
/* Debugging define, causes massive printf's to come out.
* Also enables timing calculations in WaveOut class, other stuff.
*/
/* #define _debug_ 1 */
/* MIDI definitions */
#define NORM_7 (MY_FLOAT) 0.0078125 /* this is 1/128 */
#endif

View File

@@ -1,81 +0,0 @@
/*******************************************/
/* One Pole Filter Class, */
/* by Perry R. Cook, 1995-96 */
/* The parameter gain is an additional */
/* gain parameter applied to the filter */
/* on top of the normalization that takes */
/* place automatically. So the net max */
/* gain through the system equals the */
/* value of gain. sgain is the combina- */
/* tion of gain and the normalization */
/* parameter, so if you set the poleCoeff */
/* to alpha, sgain is always set to */
/* gain * (1.0 - fabs(alpha)). */
/*******************************************/
#include "OnePole.h"
OnePole :: OnePole() : Filter()
{
poleCoeff = (MY_FLOAT) 0.9;
gain = (MY_FLOAT) 1.0;
sgain = (MY_FLOAT) 0.1;
outputs = (MY_FLOAT *) malloc(MY_FLOAT_SIZE);
outputs[0] = (MY_FLOAT) 0.0;
}
OnePole :: ~OnePole()
{
free(outputs);
}
void OnePole :: clear()
{
outputs[0] = (MY_FLOAT) 0.0;
lastOutput = (MY_FLOAT) 0.0;
}
void OnePole :: setPole(MY_FLOAT aValue)
{
poleCoeff = aValue;
if (poleCoeff > 0.0) /* Normalize gain to 1.0 max */
sgain = gain * ((MY_FLOAT) 1.0 - poleCoeff);
else
sgain = gain * ((MY_FLOAT) 1.0 + poleCoeff);
}
void OnePole :: setGain(MY_FLOAT aValue)
{
gain = aValue;
if (poleCoeff > 0.0)
sgain = gain * ((MY_FLOAT) 1.0 - poleCoeff); /* Normalize gain to 1.0 max */
else
sgain = gain * ((MY_FLOAT) 1.0 + poleCoeff);
}
MY_FLOAT OnePole :: tick(MY_FLOAT sample) /* Perform Filter Operation */
{
outputs[0] = (sgain * sample) + (poleCoeff * outputs[0]);
lastOutput = outputs[0];
return lastOutput;
}
/************ Test Main ************************/
/*
#include <stdio.h>
void main()
{
long i;
OnePole test;
test.setPole(0.99);
for (i=0;i<150;i++) printf("%lf ",test.tick(1.0));
printf("\n\n");
test.clear();
test.setPole(0.9);
test.setGain(2.0);
for (i=0;i<150;i++) printf("%lf ",test.tick(0.5));
printf("\n\n");
}
*/

View File

@@ -1,35 +0,0 @@
/*******************************************/
/* One Pole Filter Class, */
/* by Perry R. Cook, 1995-96 */
/* The parameter gain is an additional */
/* gain parameter applied to the filter */
/* on top of the normalization that takes */
/* place automatically. So the net max */
/* gain through the system equals the */
/* value of gain. sgain is the combina- */
/* tion of gain and the normalization */
/* parameter, so if you set the poleCoeff */
/* to alpha, sgain is always set to */
/* gain * (1.0 - fabs(alpha)). */
/*******************************************/
#if !defined(__OnePole_h)
#define __OnePole_h
#include "Filter.h"
class OnePole : public Filter
{
protected:
MY_FLOAT poleCoeff;
MY_FLOAT sgain;
public:
OnePole();
~OnePole();
void clear();
void setPole(MY_FLOAT aValue);
void setGain(MY_FLOAT aValue);
MY_FLOAT tick(MY_FLOAT sample);
};
#endif

View File

@@ -1,64 +0,0 @@
/*******************************************/
/* One Zero Filter Class, */
/* by Perry R. Cook, 1995-96 */
/* The parameter gain is an additional */
/* gain parameter applied to the filter */
/* on top of the normalization that takes */
/* place automatically. So the net max */
/* gain through the system equals the */
/* value of gain. sgain is the combina- */
/* tion of gain and the normalization */
/* parameter, so if you set the poleCoeff */
/* to alpha, sgain is always set to */
/* gain / (1.0 - fabs(alpha)). */
/*******************************************/
#include "OneZero.h"
OneZero :: OneZero()
{
gain = (MY_FLOAT) 1.0;
zeroCoeff = (MY_FLOAT) 1.0;
sgain = (MY_FLOAT) 0.5;
inputs = (MY_FLOAT *) malloc(MY_FLOAT_SIZE);
this->clear();
}
OneZero :: ~OneZero()
{
free(inputs);
}
void OneZero :: clear()
{
inputs[0] = (MY_FLOAT) 0.0;
lastOutput = (MY_FLOAT) 0.0;
}
void OneZero :: setGain(MY_FLOAT aValue)
{
gain = aValue;
if (zeroCoeff > 0.0) /* Normalize gain to 1.0 max */
sgain = gain / ((MY_FLOAT) 1.0 + zeroCoeff);
else
sgain = gain / ((MY_FLOAT) 1.0 - zeroCoeff);
}
void OneZero :: setCoeff(MY_FLOAT aValue)
{
zeroCoeff = aValue;
if (zeroCoeff > 0.0) /* Normalize gain to 1.0 max */
sgain = gain / ((MY_FLOAT) 1.0 + zeroCoeff);
else
sgain = gain / ((MY_FLOAT) 1.0 - zeroCoeff);
}
MY_FLOAT OneZero :: tick(MY_FLOAT sample) /* Perform Filter Operation */
{
MY_FLOAT temp;
temp = sgain * sample;
lastOutput = (inputs[0] * zeroCoeff) + temp;
inputs[0] = temp;
return lastOutput;
}

View File

@@ -1,35 +0,0 @@
/*******************************************/
/* One Zero Filter Class, */
/* by Perry R. Cook, 1995-96 */
/* The parameter gain is an additional */
/* gain parameter applied to the filter */
/* on top of the normalization that takes */
/* place automatically. So the net max */
/* gain through the system equals the */
/* value of gain. sgain is the combina- */
/* tion of gain and the normalization */
/* parameter, so if you set the poleCoeff */
/* to alpha, sgain is always set to */
/* gain / (1.0 - fabs(alpha)). */
/*******************************************/
#if !defined(__OneZero_h)
#define __OneZero_h
#include "Filter.h"
class OneZero : public Filter
{
protected:
MY_FLOAT zeroCoeff;
MY_FLOAT sgain;
public:
OneZero();
~OneZero();
void clear();
void setGain(MY_FLOAT aValue);
void setCoeff(MY_FLOAT aValue);
MY_FLOAT tick(MY_FLOAT sample);
};
#endif

View File

@@ -1,113 +0,0 @@
/*******************************************/
/* PRCRev, a simple reverb unit */
/* by Perry Cook, 1996. */
/* Incorporated into the Reverb superclass */
/* by Gary Scavone, 1998. */
/* */
/* This is based on some of the famous */
/* Stanford CCRMA reverbs (NRev, KipRev) */
/* all based on the the Chowning/Moorer/ */
/* Schroeder reverberators, which use */
/* networks of simple allpass and comb */
/* delay filters. This particular */
/* structure consists of 2 allpass units */
/* in series followed by 2 comb filters in */
/* parallel. */
/*******************************************/
#include "PRCRev.h"
PRCRev :: PRCRev(MY_FLOAT T60)
{
int lens[4]={353,1097,1777,2137};
double srscale = SRATE / 44100.0;
int val, i;
if (SRATE < 44100.0) {
for (i=0; i<4; i++) {
val = (int) floor(srscale * lens[i]);
if ((val & 1) == 0) val++;
while (!this->isprime(val)) val += 2;
lens[i] = val;
}
}
for (i=0; i<2; i++)
{
APdelayLine[i] = new DLineN(lens[i] + 2);
APdelayLine[i]->setDelay(lens[i]);
CdelayLine[i] = new DLineN(lens[i+2] + 2);
CdelayLine[i]->setDelay(lens[i+2]);
combCoeff[i] = pow(10,(-3 * lens[i+2] / (T60 * SRATE)));
}
allPassCoeff = (MY_FLOAT) 0.7;
effectMix = (MY_FLOAT) 0.5;
this->clear();
}
PRCRev :: ~PRCRev()
{
delete APdelayLine[0];
delete APdelayLine[1];
delete CdelayLine[0];
delete CdelayLine[1];
}
void PRCRev :: clear()
{
APdelayLine[0]->clear();
APdelayLine[1]->clear();
CdelayLine[0]->clear();
CdelayLine[1]->clear();
lastOutL = (MY_FLOAT) 0.0;
lastOutR = (MY_FLOAT) 0.0;
}
void PRCRev :: setEffectMix(MY_FLOAT mix)
{
effectMix = mix;
}
MY_FLOAT PRCRev :: lastOutput()
{
return (lastOutL + lastOutR) * (MY_FLOAT) 0.5;
}
MY_FLOAT PRCRev :: lastOutputL()
{
return lastOutL;
}
MY_FLOAT PRCRev :: lastOutputR()
{
return lastOutR;
}
MY_FLOAT PRCRev :: tick(MY_FLOAT input)
{
MY_FLOAT temp,temp0,temp1,temp2,temp3;
temp = APdelayLine[0]->lastOut();
temp0 = allPassCoeff * temp;
temp0 += input;
APdelayLine[0]->tick(temp0);
temp0 = -(allPassCoeff * temp0) + temp;
temp = APdelayLine[1]->lastOut();
temp1 = allPassCoeff * temp;
temp1 += temp0;
APdelayLine[1]->tick(temp1);
temp1 = -(allPassCoeff * temp1) + temp;
temp2 = temp1 + (combCoeff[0] * CdelayLine[0]->lastOut());
temp3 = temp1 + (combCoeff[1] * CdelayLine[1]->lastOut());
lastOutL = effectMix * (CdelayLine[0]->tick(temp2));
lastOutR = effectMix * (CdelayLine[1]->tick(temp3));
temp = (MY_FLOAT) (1.0 - effectMix) * input;
lastOutL += temp;
lastOutR += temp;
return (lastOutL + lastOutR) * (MY_FLOAT) 0.5;
}

View File

@@ -1,43 +0,0 @@
/*******************************************/
/* PRCRev, a simple reverb unit */
/* by Perry Cook, 1996. */
/* Incorporated into the Reverb superclass */
/* by Gary Scavone, 1998. */
/* */
/* This is based on some of the famous */
/* Stanford CCRMA reverbs (NRev, KipRev) */
/* all based on the the Chowning/Moorer/ */
/* Schroeder reverberators, which use */
/* networks of simple allpass and comb */
/* delay filters. */
/*******************************************/
#if !defined(__PRCRev_h)
#define __PRCRev_h
#include "Reverb.h"
#include "DLineN.h"
class PRCRev : public Reverb
{
protected:
DLineN *APdelayLine[2];
DLineN *CdelayLine[2];
MY_FLOAT allPassCoeff;
MY_FLOAT combCoeff[2];
MY_FLOAT lastOutL;
MY_FLOAT lastOutR;
MY_FLOAT effectMix;
public:
PRCRev(MY_FLOAT T60);
~PRCRev();
void clear();
void setEffectMix(MY_FLOAT mix);
MY_FLOAT lastOutput();
MY_FLOAT lastOutputL();
MY_FLOAT lastOutputR();
MY_FLOAT tick(MY_FLOAT input);
};
#endif

View File

@@ -1,54 +0,0 @@
/******************************************/
/* Percussive Flute Subclass */
/* of Algorithm 4 (TX81Z) Subclass of */
/* 4 Operator FM Synth */
/* by Perry R. Cook, 1995-96 */
/******************************************/
#include "PercFlut.h"
PercFlut :: PercFlut() : FM4Alg4()
{
this->loadWaves("rawwaves/sinewave.raw",
"rawwaves/sinewave.raw",
"rawwaves/sinewave.raw",
"rawwaves/sinewave.raw");
this->setRatio(0,(MY_FLOAT) (1.50 * 1.000));
this->setRatio(1,(MY_FLOAT) (3.00 * 0.995));
this->setRatio(2,(MY_FLOAT) (2.99 * 1.005));
this->setRatio(3,(MY_FLOAT) (6.00 * 0.997));
gains[0] = __FM4Op_gains[99];
gains[1] = __FM4Op_gains[71];
gains[2] = __FM4Op_gains[93];
gains[3] = __FM4Op_gains[85];
adsr[0]->setAllTimes((MY_FLOAT) 0.05,(MY_FLOAT) 0.05,
__FM4Op_susLevels[14],(MY_FLOAT) 0.05);
adsr[1]->setAllTimes((MY_FLOAT) 0.02,(MY_FLOAT) 0.50,
__FM4Op_susLevels[13],(MY_FLOAT) 0.5);
adsr[2]->setAllTimes((MY_FLOAT) 0.02,(MY_FLOAT) 0.30,
__FM4Op_susLevels[11],(MY_FLOAT) 0.05);
adsr[3]->setAllTimes((MY_FLOAT) 0.02,(MY_FLOAT) 0.05,
__FM4Op_susLevels[13],(MY_FLOAT) 0.01);
twozero->setGain((MY_FLOAT) 0.0);
modDepth = (MY_FLOAT) 0.005;
}
void PercFlut :: setFreq(MY_FLOAT frequency)
{
baseFreq = frequency;
}
void PercFlut :: noteOn(MY_FLOAT freq, MY_FLOAT amp)
{
gains[0] = amp * __FM4Op_gains[99] * 0.5;
gains[1] = amp * __FM4Op_gains[71] * 0.5;
gains[2] = amp * __FM4Op_gains[93] * 0.5;
gains[3] = amp * __FM4Op_gains[85] * 0.5;
this->setFreq(freq);
this->keyOn();
#if defined(_debug_)
printf("PercFlut : NoteOn: Freq=%lf Amp=%lf\n",freq,amp);
#endif
}

View File

@@ -1,21 +0,0 @@
/******************************************/
/* Percussive Flute Subclass */
/* of Algorithm 4 (TX81Z) Subclass of */
/* 4 Operator FM Synth */
/* by Perry R. Cook, 1995-96 */
/******************************************/
#if !defined(__PercFlut_h)
#define __PercFlut_h
#include "FM4Alg4.h"
class PercFlut : public FM4Alg4
{
public:
PercFlut();
virtual void setFreq(MY_FLOAT frequency);
virtual void noteOn(MY_FLOAT freq, MY_FLOAT amp);
};
#endif

View File

@@ -1,84 +0,0 @@
/******************************************/
/* Karplus-Strong plucked string model */
/* by Perry Cook, 1995-96 */
/* */
/* There exist at least two patents, */
/* assigned to Stanford, bearing the */
/* names of Karplus and/or Strong. */
/******************************************/
#include "Plucked.h"
Plucked :: Plucked(MY_FLOAT lowestFreq)
{
length = (long) (SRATE / lowestFreq + 1);
loopGain = (MY_FLOAT) 0.999;
delayLine = new DLineA(length);
loopFilt = new OneZero;
pickFilt = new OnePole;
noise = new Noise;
this->clear();
}
Plucked :: ~Plucked()
{
delete delayLine;
delete loopFilt;
delete pickFilt;
delete noise;
}
void Plucked :: clear()
{
delayLine->clear();
loopFilt->clear();
pickFilt->clear();
}
void Plucked :: setFreq(MY_FLOAT frequency)
{
MY_FLOAT delay;
delay = (SRATE / frequency) - (MY_FLOAT) 0.5; /* length - delays */
delayLine->setDelay(delay);
loopGain = (MY_FLOAT) 0.995 + (frequency * (MY_FLOAT) 0.000005);
if (loopGain>1.0) loopGain = (MY_FLOAT) 0.99999;
}
void Plucked :: pluck(MY_FLOAT amplitude)
{
long i;
pickFilt->setPole((MY_FLOAT) 0.999 - (amplitude * (MY_FLOAT) 0.15));
pickFilt->setGain(amplitude * (MY_FLOAT) 0.5);
for (i=0;i<length;i++)
delayLine->tick(delayLine->lastOut() * (MY_FLOAT) 0.6 /* fill delay with noise */
+ pickFilt->tick(noise->tick())); /* additively with current */
/* contents */
}
void Plucked :: noteOn(MY_FLOAT freq, MY_FLOAT amp)
{
this->setFreq(freq);
this->pluck(amp);
#if defined(_debug_)
printf("Plucked : NoteOn: Freq=%lf Amp=%lf\n",freq,amp);
#endif
}
void Plucked :: noteOff(MY_FLOAT amp)
{
loopGain = (MY_FLOAT) 1.0 - amp;
#if defined(_debug_)
printf("Plucked : NoteOff: Amp=%lf\n",amp);
#endif
}
MY_FLOAT Plucked :: tick()
{
lastOutput = delayLine->tick( /* check this out, */
loopFilt->tick( /* here's the whole inner */
delayLine->lastOut() /* loop of the instrument!! */
* loopGain));
lastOutput *= (MY_FLOAT) 3.0;
return lastOutput;
}

View File

@@ -1,40 +0,0 @@
/******************************************/
/* Karplus-Strong plucked string model */
/* by Perry Cook, 1995-96 */
/* */
/* There exist at least two patents, */
/* assigned to Stanford, bearing the */
/* names of Karplus and/or Strong. */
/******************************************/
#if !defined(__Plucked_h)
#define __Plucked_h
#include "Instrmnt.h"
#include "DLineA.h"
#include "OneZero.h"
#include "OnePole.h"
#include "Noise.h"
class Plucked : public Instrmnt
{
protected:
DLineA *delayLine;
OneZero *loopFilt;
OnePole *pickFilt;
Noise *noise;
long length;
MY_FLOAT loopGain;
public:
Plucked(MY_FLOAT lowestFreq);
~Plucked();
void clear();
virtual void setFreq(MY_FLOAT frequency);
void pluck(MY_FLOAT amplitude);
virtual void noteOn(MY_FLOAT freq, MY_FLOAT amp);
virtual void noteOff(MY_FLOAT amp);
virtual MY_FLOAT tick();
};
#endif

View File

@@ -1,90 +0,0 @@
/******************************************/
/* Enhanced (Jaffe-Smith, Smith, others) */
/* Karplus-Strong plucked model */
/* by Perry Cook, 1995-96 */
/* This is the super-class, with no */
/* excitation specified. So this one by */
/* itself doesn't make any sound. */
/******************************************/
#include "Plucked2.h"
Plucked2 :: Plucked2(MY_FLOAT lowestFreq)
{
length = (long) (SRATE / lowestFreq + 1);
baseLoopGain = (MY_FLOAT) 0.995;
loopGain = (MY_FLOAT) 0.999;
delayLine = new DLineA(length);
delayLine2 = new DLineA(length);
combDelay = new DLineL(length);
filter = new OneZero;
filter2 = new OneZero;
pluckAmp = (MY_FLOAT) 0.3;
pluckPos = (MY_FLOAT) 0.4;
detuning = (MY_FLOAT) 0.995;
lastFreq = lowestFreq * (MY_FLOAT) 2.0;
lastLength = length * (MY_FLOAT) 0.5;
}
Plucked2 :: ~Plucked2()
{
delete delayLine;
delete delayLine2;
delete combDelay;
delete filter;
delete filter2;
}
void Plucked2 :: clear()
{
delayLine->clear();
delayLine2->clear();
combDelay->clear();
filter->clear();
filter2->clear();
}
void Plucked2 :: setFreq(MY_FLOAT frequency)
{
lastFreq = frequency;
lastLength = ((MY_FLOAT) SRATE / lastFreq); /* length - delays */
delayLine->setDelay((lastLength / detuning) - (MY_FLOAT) 0.5);
delayLine2->setDelay((lastLength * detuning) - (MY_FLOAT) 0.5);
loopGain = baseLoopGain + (frequency * (MY_FLOAT) 0.000005);
if (loopGain>1.0) loopGain = (MY_FLOAT) 0.99999;
}
void Plucked2 :: setDetune(MY_FLOAT detune)
{
detuning = detune;
delayLine->setDelay((lastLength / detuning) - (MY_FLOAT) 0.5);
delayLine2->setDelay((lastLength * detuning) - (MY_FLOAT) 0.5);
}
void Plucked2 :: setFreqAndDetune(MY_FLOAT frequency,MY_FLOAT detune)
{
lastFreq = frequency;
detuning = detune;
this->setFreq(frequency);
}
void Plucked2 :: setPluckPos(MY_FLOAT position)
{
pluckPos = position;
}
void Plucked2 :: setBaseLoopGain(MY_FLOAT aGain)
{
baseLoopGain = aGain;
loopGain = baseLoopGain + (lastFreq * (MY_FLOAT) 0.000005);
if (loopGain>1.0) loopGain = (MY_FLOAT) 0.99999;
}
void Plucked2 :: noteOff(MY_FLOAT amp)
{
loopGain = ((MY_FLOAT) 1.0 - amp) * (MY_FLOAT) 0.5;
#if defined(_debug_)
printf("Plucked2 : NoteOff: Amp=%lf\n",amp);
#endif
}

View File

@@ -1,46 +0,0 @@
/******************************************/
/* Enhanced (Jaffe-Smith, Smith, others) */
/* Karplus-Strong plucked model */
/* by Perry Cook, 1995-96 */
/* This is the super-class, with no */
/* excitation specified. So this one by */
/* itself doesn't make any sound. */
/******************************************/
#if !defined(__Plucked2_h)
#define __Plucked2_h
#include "Instrmnt.h"
#include "DLineL.h"
#include "DLineA.h"
#include "OneZero.h"
class Plucked2 : public Instrmnt
{
protected:
DLineA *delayLine;
DLineA *delayLine2;
DLineL *combDelay;
OneZero *filter;
OneZero *filter2;
long length;
MY_FLOAT loopGain;
MY_FLOAT baseLoopGain;
MY_FLOAT lastFreq;
MY_FLOAT lastLength;
MY_FLOAT detuning;
MY_FLOAT pluckAmp;
MY_FLOAT pluckPos;
public:
Plucked2(MY_FLOAT lowestFreq);
virtual ~Plucked2();
void clear();
virtual void setFreq(MY_FLOAT frequency);
void setDetune(MY_FLOAT detune);
void setFreqAndDetune(MY_FLOAT frequency, MY_FLOAT detune);
void setPluckPos(MY_FLOAT position);
void setBaseLoopGain(MY_FLOAT aGain);
virtual void noteOff(MY_FLOAT amp);
};
#endif

Some files were not shown because too many files have changed in this diff Show More