Version 4.2.0

This commit is contained in:
Gary Scavone
2009-03-24 23:02:14 -04:00
committed by Stephen Sinclair
parent cf06b7598b
commit a6381b9d38
281 changed files with 17152 additions and 12000 deletions

View File

@@ -12,190 +12,186 @@
- Blowing Frequency Modulation = 2
- Volume = 128
by Perry R. Cook 1996 - 2002.
by Perry R. Cook 1996 - 2004.
*/
/***************************************************/
#include "Whistle.h"
#include "SKINI.msg"
#include <stdlib.h>
#include <math.h>
#define CAN_RADIUS 100
#define PEA_RADIUS 30
#define BUMP_RADIUS 5
const int CAN_RADIUS = 100;
const int PEA_RADIUS = 30;
const int BUMP_RADIUS = 5;
#define NORM_CAN_LOSS 0.97
#define SLOW_CAN_LOSS 0.90
#define GRAVITY 20.0
// GRAVITY WAS 6.0
const StkFloat NORM_CAN_LOSS = 0.97;
const StkFloat SLOW_CAN_LOSS = 0.90;
const StkFloat GRAVITY = 20.0;
#define NORM_TICK_SIZE 0.004
#define SLOW_TICK_SIZE 0.0001
const StkFloat NORM_TICK_SIZE = 0.004;
const StkFloat SLOW_TICK_SIZE = 0.0001;
#define ENV_RATE 0.001
const StkFloat ENV_RATE = 0.001;
Whistle :: Whistle()
{
tempVector = new Vector3D(0,0,0);
can = new Sphere(CAN_RADIUS);
pea = new Sphere(PEA_RADIUS);
bumper = new Sphere(BUMP_RADIUS);
// Concatenate the STK rawwave path to the rawwave file
sine = new WaveLoop( (Stk::rawwavePath() + "sinewave.raw").c_str(), TRUE );
sine->setFrequency(2800.0);
sine_ = new WaveLoop( ( Stk::rawwavePath() + "sinewave.raw").c_str(), true );
sine_->setFrequency( 2800.0 );
can->setPosition(0, 0, 0); // set can location
can->setVelocity(0, 0, 0); // and the velocity
can_.setRadius( CAN_RADIUS );
can_.setPosition(0, 0, 0); // set can location
can_.setVelocity(0, 0, 0); // and the velocity
onepole.setPole(0.95); // 0.99
onepole_.setPole(0.95); // 0.99
bumper->setPosition(0.0, CAN_RADIUS-BUMP_RADIUS, 0);
bumper->setPosition(0.0, CAN_RADIUS-BUMP_RADIUS, 0);
pea->setPosition(0, CAN_RADIUS/2, 0);
pea->setVelocity(35, 15, 0);
bumper_.setRadius( BUMP_RADIUS );
bumper_.setPosition(0.0, CAN_RADIUS-BUMP_RADIUS, 0);
bumper_.setPosition(0.0, CAN_RADIUS-BUMP_RADIUS, 0);
envelope.setRate(ENV_RATE);
envelope.keyOn();
pea_.setRadius( PEA_RADIUS );
pea_.setPosition(0, CAN_RADIUS/2, 0);
pea_.setVelocity(35, 15, 0);
fippleFreqMod = 0.5;
fippleGainMod = 0.5;
blowFreqMod = 0.25;
noiseGain = 0.125;
maxPressure = (MY_FLOAT) 0.0;
baseFrequency = 2000;
envelope_.setRate( ENV_RATE );
envelope_.keyOn();
tickSize = NORM_TICK_SIZE;
canLoss = NORM_CAN_LOSS;
fippleFreqMod_ = 0.5;
fippleGainMod_ = 0.5;
blowFreqMod_ = 0.25;
noiseGain_ = 0.125;
baseFrequency_ = 2000;
subSample = 1;
subSampCount = subSample;
tickSize_ = NORM_TICK_SIZE;
canLoss_ = NORM_CAN_LOSS;
subSample_ = 1;
subSampCount_ = subSample_;
}
Whistle :: ~Whistle()
{
delete tempVector;
delete can;
delete pea;
delete bumper;
delete sine;
delete sine_;
}
void Whistle :: clear()
{
}
void Whistle :: setFrequency(MY_FLOAT frequency)
void Whistle :: setFrequency(StkFloat frequency)
{
MY_FLOAT freakency = frequency * 4; // the whistle is a transposing instrument
StkFloat freakency = frequency * 4; // the whistle is a transposing instrument
if ( frequency <= 0.0 ) {
std::cerr << "Whistle: setFrequency parameter is less than or equal to zero!" << std::endl;
errorString_ << "Whistle::setFrequency: parameter is less than or equal to zero!";
handleError( StkError::WARNING );
freakency = 220.0;
}
baseFrequency = freakency;
baseFrequency_ = freakency;
}
void Whistle :: startBlowing(MY_FLOAT amplitude, MY_FLOAT rate)
void Whistle :: startBlowing(StkFloat amplitude, StkFloat rate)
{
envelope.setRate(ENV_RATE);
envelope.setTarget(amplitude);
envelope_.setRate( ENV_RATE );
envelope_.setTarget( amplitude );
}
void Whistle :: stopBlowing(MY_FLOAT rate)
void Whistle :: stopBlowing(StkFloat rate)
{
envelope.setRate(rate);
envelope.keyOff();
envelope_.setRate( rate );
envelope_.keyOff();
}
void Whistle :: noteOn(MY_FLOAT frequency, MY_FLOAT amplitude)
void Whistle :: noteOn(StkFloat frequency, StkFloat amplitude)
{
setFrequency(frequency);
startBlowing(amplitude*2.0 ,amplitude * 0.2);
this->setFrequency( frequency );
this->startBlowing( amplitude*2.0 ,amplitude * 0.2 );
#if defined(_STK_DEBUG_)
std::cerr << "Whistle: NoteOn frequency = " << frequency << ", amplitude = " << amplitude << std::endl;
errorString_ << "Whistle::NoteOn: frequency = " << frequency << ", amplitude = " << amplitude << '.';
handleError( StkError::DEBUG_WARNING );
#endif
}
void Whistle :: noteOff(MY_FLOAT amplitude)
void Whistle :: noteOff(StkFloat amplitude)
{
this->stopBlowing(amplitude * 0.02);
this->stopBlowing( amplitude * 0.02 );
#if defined(_STK_DEBUG_)
std::cerr << "Whistle: NoteOff amplitude = " << amplitude << std::endl;
errorString_ << "Whistle::NoteOff: amplitude = " << amplitude << '.';
handleError( StkError::DEBUG_WARNING );
#endif
}
int frameCount = 0;
MY_FLOAT Whistle :: tick()
StkFloat Whistle :: tick()
{
MY_FLOAT soundMix, tempFreq;
double envOut = 0, temp, temp1, temp2, tempX, tempY;
StkFloat soundMix, tempFreq;
StkFloat envOut = 0, temp, temp1, temp2, tempX, tempY;
double phi, cosphi, sinphi;
double gain = 0.5, mod = 0.0;
if (--subSampCount <= 0) {
tempVectorP = pea->getPosition();
subSampCount = subSample;
temp = bumper->isInside(tempVectorP);
if ( --subSampCount_ <= 0 ) {
tempVectorP_ = pea_.getPosition();
subSampCount_ = subSample_;
temp = bumper_.isInside( tempVectorP_ );
#ifdef WHISTLE_ANIMATION
frameCount += 1;
if (frameCount >= (1470 / subSample)) {
if ( frameCount >= (1470 / subSample_) ) {
frameCount = 0;
printf("%f %f %f\n",tempVectorP->getX(),tempVectorP->getY(),envOut);
fflush(stdout);
}
#endif
envOut = envelope.tick();
envOut = envelope_.tick();
if (temp < (BUMP_RADIUS + PEA_RADIUS)) {
tempX = envOut * tickSize * 2000 * noise.tick();
tempY = -envOut * tickSize * 1000 * (1.0 + noise.tick());
pea->addVelocity(tempX,tempY,0);
pea->tick(tickSize);
tempX = envOut * tickSize_ * 2000 * noise_.tick();
tempY = -envOut * tickSize_ * 1000 * (1.0 + noise_.tick());
pea_.addVelocity( tempX, tempY, 0 );
pea_.tick( tickSize_ );
}
mod = exp(-temp * 0.01); // exp. distance falloff of fipple/pea effect
temp = onepole.tick(mod); // smooth it a little
gain = (1.0 - (fippleGainMod*0.5)) + (2.0 * fippleGainMod * temp);
gain *= gain; // squared distance/gain
mod = exp(-temp * 0.01); // exp. distance falloff of fipple/pea effect
temp = onepole_.tick(mod); // smooth it a little
gain = (1.0 - (fippleGainMod_*0.5)) + (2.0 * fippleGainMod_ * temp);
gain *= gain; // squared distance/gain
// tempFreq = 1.0 // Normalized Base Freq
// + (fippleFreqMod * 0.25) - (fippleFreqMod * temp) // fippleModulation
// - (blowFreqMod) + (blowFreqMod * envOut); // blowingModulation
// + (fippleFreqMod_ * 0.25) - (fippleFreqMod_ * temp) // fippleModulation
// - (blowFreqMod_) + (blowFreqMod_ * envOut); // blowingModulation
// short form of above
tempFreq = 1.0 + fippleFreqMod*(0.25-temp) + blowFreqMod*(envOut-1.0);
tempFreq *= baseFrequency;
tempFreq = 1.0 + fippleFreqMod_*(0.25-temp) + blowFreqMod_*(envOut-1.0);
tempFreq *= baseFrequency_;
sine->setFrequency(tempFreq);
sine_->setFrequency(tempFreq);
tempVectorP = pea->getPosition();
temp = can->isInside(tempVectorP);
tempVectorP_ = pea_.getPosition();
temp = can_.isInside(tempVectorP_);
temp = -temp; // We know (hope) it's inside, just how much??
if (temp < (PEA_RADIUS * 1.25)) {
pea->getVelocity(tempVector); // This is the can/pea collision
tempX = tempVectorP->getX(); // calculation. Could probably
tempY = tempVectorP->getY(); // simplify using tables, etc.
if (temp < (PEA_RADIUS * 1.25)) {
pea_.getVelocity( &tempVector_ ); // This is the can/pea collision
tempX = tempVectorP_->getX(); // calculation. Could probably
tempY = tempVectorP_->getY(); // simplify using tables, etc.
phi = -atan2(tempY,tempX);
cosphi = cos(phi);
sinphi = sin(phi);
temp1 = (cosphi*tempVector->getX()) - (sinphi*tempVector->getY());
temp2 = (sinphi*tempVector->getX()) + (cosphi*tempVector->getY());
temp1 = (cosphi*tempVector_.getX()) - (sinphi*tempVector_.getY());
temp2 = (sinphi*tempVector_.getX()) + (cosphi*tempVector_.getY());
temp1 = -temp1;
tempX = (cosphi*temp1) + (sinphi*temp2);
tempY = (-sinphi*temp1) + (cosphi*temp2);
pea->setVelocity(tempX, tempY, 0);
pea->tick(tickSize);
pea->setVelocity(tempX*canLoss, tempY*canLoss, 0);
pea->tick(tickSize);
pea_.setVelocity(tempX, tempY, 0);
pea_.tick(tickSize_);
pea_.setVelocity( tempX*canLoss_, tempY*canLoss_, 0 );
pea_.tick(tickSize_);
}
temp = tempVectorP->getLength();
if (temp > 0.01) {
tempX = tempVectorP->getX();
tempY = tempVectorP->getY();
phi = atan2(tempY,tempX);
temp = tempVectorP_->getLength();
if (temp > 0.01) {
tempX = tempVectorP_->getX();
tempY = tempVectorP_->getY();
phi = atan2( tempY, tempX );
phi += 0.3 * temp / CAN_RADIUS;
cosphi = cos(phi);
sinphi = sin(phi);
@@ -207,50 +203,64 @@ MY_FLOAT Whistle :: tick()
tempY = 0.0;
}
temp = (0.9 + 0.1*subSample*noise.tick()) * envOut * 0.6 * tickSize;
pea->addVelocity(temp * tempX,
(temp*tempY) - (GRAVITY*tickSize),0);
pea->tick(tickSize);
temp = (0.9 + 0.1*subSample_*noise_.tick()) * envOut * 0.6 * tickSize_;
pea_.addVelocity( temp * tempX, (temp*tempY) - (GRAVITY*tickSize_), 0 );
pea_.tick( tickSize_ );
// bumper->tick(0.0);
// bumper_.tick(0.0);
}
temp = envOut * envOut * gain / 2;
soundMix = temp * (sine->tick() + (noiseGain*noise.tick()));
lastOutput = 0.25 * soundMix; // should probably do one-zero filter here
soundMix = temp * ( sine_->tick() + ( noiseGain_*noise_.tick() ) );
lastOutput_ = 0.25 * soundMix; // should probably do one-zero filter here
return lastOutput;
return lastOutput_;
}
void Whistle :: controlChange(int number, MY_FLOAT value)
StkFloat *Whistle :: tick(StkFloat *vector, unsigned int vectorSize)
{
MY_FLOAT norm = value * ONE_OVER_128;
return Instrmnt::tick( vector, vectorSize );
}
StkFrames& Whistle :: tick( StkFrames& frames, unsigned int channel )
{
return Instrmnt::tick( frames, channel );
}
void Whistle :: controlChange(int number, StkFloat value)
{
StkFloat norm = value * ONE_OVER_128;
if ( norm < 0 ) {
norm = 0.0;
std::cerr << "Whistle: Control value less than zero!" << std::endl;
errorString_ << "Whistle::controlChange: control value less than zero ... setting to zero!";
handleError( StkError::WARNING );
}
else if ( norm > 1.0 ) {
norm = 1.0;
std::cerr << "Whistle: Control value greater than 128.0!" << std::endl;
errorString_ << "Whistle::controlChange: control value greater than 128.0 ... setting to 128.0!";
handleError( StkError::WARNING );
}
if (number == __SK_NoiseLevel_) // 4
noiseGain = 0.25 * norm;
noiseGain_ = 0.25 * norm;
else if (number == __SK_ModFrequency_) // 11
fippleFreqMod = norm;
fippleFreqMod_ = norm;
else if (number == __SK_ModWheel_) // 1
fippleGainMod = norm;
fippleGainMod_ = norm;
else if (number == __SK_AfterTouch_Cont_) // 128
envelope.setTarget( norm * 2.0 );
envelope_.setTarget( norm * 2.0 );
else if (number == __SK_Breath_) // 2
blowFreqMod = norm * 0.5;
blowFreqMod_ = norm * 0.5;
else if (number == __SK_Sustain_) // 64
if (value < 1.0) subSample = 1;
else
std::cerr << "Whistle: Undefined Control Number (" << number << ")!!" << std::endl;
if (value < 1.0) subSample_ = 1;
else {
errorString_ << "Whistle::controlChange: undefined control number (" << number << ")!";
handleError( StkError::WARNING );
}
#if defined(_STK_DEBUG_)
std::cerr << "Whistle: controlChange number = " << number << ", value = " << value << std::endl;
errorString_ << "Whistle::controlChange: number = " << number << ", value = " << value << '.';
handleError( StkError::DEBUG_WARNING );
#endif
}