Files
stk/src/RtWvIn.cpp

205 lines
6.1 KiB
C++

/***************************************************/
/*! \class RtWvIn
\brief STK realtime audio (blocking) input class.
This class provides a simplified interface to RtAudio for realtime
audio input. It is a subclass of WvIn. This class makes use of
RtAudio's callback functionality by creating a large ring-buffer
from which data is read. This class should not be used when
low-latency is desired.
RtWvIn supports multi-channel data in both interleaved and
non-interleaved formats. It is important to distinguish the
tick() method that computes a single frame (and returns only the
specified sample of a multi-channel frame) from the overloaded one
that takes an StkFrames object for multi-channel and/or
multi-frame data.
by Perry R. Cook and Gary P. Scavone, 1995--2016.
*/
/***************************************************/
#include "RtWvIn.h"
#include <cstring>
namespace stk {
// This function is automatically called by RtAudio to supply input audio data.
int read( void *outputBuffer, void *inputBuffer, unsigned int nBufferFrames,
double streamTime, RtAudioStreamStatus status, void *dataPointer )
{
( (RtWvIn *) dataPointer )->fillBuffer( inputBuffer, nBufferFrames );
return 0;
}
// This function does not block. If the user does not read the buffer
// data fast enough, unread data will be overwritten (data overrun).
void RtWvIn :: fillBuffer( void *buffer, unsigned int nFrames )
{
StkFloat *samples = (StkFloat *) buffer;
unsigned int counter, iStart, nSamples = nFrames * data_.channels();
while ( nSamples > 0 ) {
// I'm assuming that both the RtAudio and StkFrames buffers
// contain interleaved data.
iStart = writeIndex_ * data_.channels();
counter = nSamples;
// Pre-increment write pointer and check bounds.
writeIndex_ += nSamples / data_.channels();
if ( writeIndex_ >= data_.frames() ) {
writeIndex_ = 0;
counter = data_.size() - iStart;
}
// Copy data to the StkFrames container.
for ( unsigned int i=0; i<counter; i++ )
data_[iStart++] = *samples++;
nSamples -= counter;
}
mutex_.lock();
framesFilled_ += nFrames;
mutex_.unlock();
if ( framesFilled_ > data_.frames() ) {
framesFilled_ = data_.frames();
oStream_ << "RtWvIn: audio buffer overrun!";
handleError( StkError::WARNING );
}
}
RtWvIn :: RtWvIn( unsigned int nChannels, StkFloat sampleRate, int device, int bufferFrames, int nBuffers )
: stopped_( true ), readIndex_( 0 ), writeIndex_( 0 ), framesFilled_( 0 )
{
// We'll let RtAudio deal with channel and sample rate limitations.
RtAudio::StreamParameters parameters;
if ( device == 0 )
parameters.deviceId = adc_.getDefaultInputDevice();
else
parameters.deviceId = device - 1;
parameters.nChannels = nChannels;
unsigned int size = bufferFrames;
RtAudioFormat format = ( sizeof(StkFloat) == 8 ) ? RTAUDIO_FLOAT64 : RTAUDIO_FLOAT32;
try {
adc_.openStream( NULL, &parameters, format, (unsigned int)Stk::sampleRate(), &size, &read, (void *)this );
}
catch ( RtAudioError &error ) {
handleError( error.what(), StkError::AUDIO_SYSTEM );
}
data_.resize( size * nBuffers, nChannels );
lastFrame_.resize( 1, nChannels );
}
RtWvIn :: ~RtWvIn()
{
if ( !stopped_ ) adc_.stopStream();
adc_.closeStream();
}
void RtWvIn :: start()
{
if ( stopped_ ) {
adc_.startStream();
stopped_ = false;
}
}
void RtWvIn :: stop()
{
if ( !stopped_ ) {
adc_.stopStream();
stopped_ = true;
for ( unsigned int i=0; i<lastFrame_.size(); i++ ) lastFrame_[i] = 0.0;
}
}
StkFloat RtWvIn :: tick( unsigned int channel )
{
#if defined(_STK_DEBUG_)
if ( channel >= data_.channels() ) {
oStream_ << "RtWvIn::tick(): channel argument is incompatible with streamed channels!";
handleError( StkError::FUNCTION_ARGUMENT );
}
#endif
if ( stopped_ ) this->start();
// Block until at least one frame is available.
while ( framesFilled_ == 0 ) Stk::sleep( 1 );
unsigned long index = readIndex_ * lastFrame_.channels();
for ( unsigned int i=0; i<lastFrame_.size(); i++ )
lastFrame_[i] = data_[index++];
mutex_.lock();
framesFilled_--;
mutex_.unlock();
readIndex_++;
if ( readIndex_ >= data_.frames() )
readIndex_ = 0;
return lastFrame_[channel];
}
StkFrames& RtWvIn :: tick( StkFrames& frames, unsigned int channel )
{
unsigned int nChannels = lastFrame_.channels();
#if defined(_STK_DEBUG_)
if ( channel > frames.channels() - nChannels ) {
oStream_ << "RtWvIn::tick(): channel and StkFrames arguments are incompatible!";
handleError( StkError::FUNCTION_ARGUMENT );
}
#endif
if ( stopped_ ) this->start();
// See how much space we have and fill as much as we can ... if we
// still have space left in the frames object, then wait and repeat.
unsigned int nFrames, bytes, framesRead = 0;
while ( framesRead < frames.frames() ) {
// Block until we have some input data.
while ( framesFilled_ == 0 ) Stk::sleep( 1 );
// Copy data in one chunk up to the end of the data buffer.
nFrames = framesFilled_;
if ( readIndex_ + nFrames > data_.frames() )
nFrames = data_.frames() - readIndex_;
if ( nFrames > frames.frames() - framesRead )
nFrames = frames.frames() - framesRead;
bytes = nFrames * nChannels * sizeof( StkFloat );
StkFloat *samples = &data_[readIndex_ * nChannels];
unsigned int hop = frames.channels() - nChannels;
if ( hop == 0 )
memcpy( &frames[framesRead * nChannels], samples, bytes );
else {
StkFloat *fSamples = &frames[channel];
unsigned int j;
for ( unsigned int i=0; i<frames.frames(); i++, fSamples += hop ) {
for ( j=1; j<nChannels; j++ )
*fSamples++ = *samples++;
}
}
readIndex_ += nFrames;
if ( readIndex_ == data_.frames() ) readIndex_ = 0;
framesRead += nFrames;
mutex_.lock();
framesFilled_ -= nFrames;
mutex_.unlock();
}
unsigned long index = (frames.frames() - 1) * nChannels;
for ( unsigned int i=0; i<lastFrame_.size(); i++ )
lastFrame_[i] = frames[channel+index++];
return frames;
}
} // stk namespace