Files
stk/doc/html/classBiQuad.html
2013-09-29 23:38:16 +02:00

257 lines
13 KiB
HTML

<HTML>
<HEAD>
<TITLE>The Synthesis ToolKit in C++ (STK)</TITLE>
<LINK HREF="doxygen.css" REL="stylesheet" TYPE="text/css">
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<CENTER>
<img src="princeton.gif"> &nbsp; <img src="ccrma.gif"> &nbsp; <img src="mcgill.gif"><P>
<a class="qindex" href="index.html">Home</a> &nbsp; <a class="qindex" href="information.html">Information</a> &nbsp; <a class="qindex" href="classes.html">Classes</a> &nbsp; <a class="qindex" href="download.html">Download</a> &nbsp; <a class="qindex" href="usage.html">Usage</a> &nbsp; <a class="qindex" href="maillist.html">Mail List</a> &nbsp; <a class="qindex" href="system.html">Requirements</a> &nbsp; <a class="qindex" href="links.html">Links</a> &nbsp; <a class="qindex" href="tutorial.html">Tutorial</a></CENTER>
<HR>
<!-- Generated by Doxygen 1.3.4 -->
<h1>BiQuad Class Reference</h1>STK biquad (two-pole, two-zero) filter class.
<a href="#_details">More...</a>
<p>
<code>#include &lt;<a class="el" href="BiQuad_8h-source.html">BiQuad.h</a>&gt;</code>
<p>
<p>Inheritance diagram for BiQuad:
<p><center><img src="classBiQuad.png" usemap="#BiQuad_map" border="0" alt=""></center>
<map name="BiQuad_map">
<area href="classFilter.html" alt="Filter" shape="rect" coords="0,56,72,80">
<area href="classStk.html" alt="Stk" shape="rect" coords="0,0,72,24">
<area href="classFormSwep.html" alt="FormSwep" shape="rect" coords="0,168,72,192">
</map>
<a href="classBiQuad-members.html">List of all members.</a><table border=0 cellpadding=0 cellspacing=0>
<tr><td></td></tr>
<tr><td colspan=2><br><h2>Public Member Functions</h2></td></tr>
<tr><td class="memItemLeft" nowrap align=right valign=top><a class="anchor" name="a0" doxytag="BiQuad::BiQuad" ></a>
&nbsp;</td><td class="memItemRight" valign=bottom><a class="el" href="classBiQuad.html#a0">BiQuad</a> ()</td></tr>
<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Default constructor creates a second-order pass-through filter. <br><br></td></tr>
<tr><td class="memItemLeft" nowrap align=right valign=top><a class="anchor" name="a1" doxytag="BiQuad::~BiQuad" ></a>
virtual&nbsp;</td><td class="memItemRight" valign=bottom><a class="el" href="classBiQuad.html#a1">~BiQuad</a> ()</td></tr>
<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Class destructor. <br><br></td></tr>
<tr><td class="memItemLeft" nowrap align=right valign=top><a class="anchor" name="a2" doxytag="BiQuad::clear" ></a>
void&nbsp;</td><td class="memItemRight" valign=bottom><a class="el" href="classBiQuad.html#a2">clear</a> (void)</td></tr>
<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Clears all internal states of the filter. <br><br></td></tr>
<tr><td class="memItemLeft" nowrap align=right valign=top><a class="anchor" name="a3" doxytag="BiQuad::setB0" ></a>
void&nbsp;</td><td class="memItemRight" valign=bottom><a class="el" href="classBiQuad.html#a3">setB0</a> (MY_FLOAT b0)</td></tr>
<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Set the b[0] coefficient value. <br><br></td></tr>
<tr><td class="memItemLeft" nowrap align=right valign=top><a class="anchor" name="a4" doxytag="BiQuad::setB1" ></a>
void&nbsp;</td><td class="memItemRight" valign=bottom><a class="el" href="classBiQuad.html#a4">setB1</a> (MY_FLOAT b1)</td></tr>
<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Set the b[1] coefficient value. <br><br></td></tr>
<tr><td class="memItemLeft" nowrap align=right valign=top><a class="anchor" name="a5" doxytag="BiQuad::setB2" ></a>
void&nbsp;</td><td class="memItemRight" valign=bottom><a class="el" href="classBiQuad.html#a5">setB2</a> (MY_FLOAT b2)</td></tr>
<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Set the b[2] coefficient value. <br><br></td></tr>
<tr><td class="memItemLeft" nowrap align=right valign=top><a class="anchor" name="a6" doxytag="BiQuad::setA1" ></a>
void&nbsp;</td><td class="memItemRight" valign=bottom><a class="el" href="classBiQuad.html#a6">setA1</a> (MY_FLOAT a1)</td></tr>
<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Set the a[1] coefficient value. <br><br></td></tr>
<tr><td class="memItemLeft" nowrap align=right valign=top><a class="anchor" name="a7" doxytag="BiQuad::setA2" ></a>
void&nbsp;</td><td class="memItemRight" valign=bottom><a class="el" href="classBiQuad.html#a7">setA2</a> (MY_FLOAT a2)</td></tr>
<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Set the a[2] coefficient value. <br><br></td></tr>
<tr><td class="memItemLeft" nowrap align=right valign=top>void&nbsp;</td><td class="memItemRight" valign=bottom><a class="el" href="classBiQuad.html#a8">setResonance</a> (MY_FLOAT frequency, MY_FLOAT radius, bool normalize=FALSE)</td></tr>
<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Sets the filter coefficients for a resonance at <em>frequency</em> (in Hz). </em> <a href="#a8"></a><em><br><br></td></tr>
<tr><td class="memItemLeft" nowrap align=right valign=top>void&nbsp;</td><td class="memItemRight" valign=bottom><a class="el" href="classBiQuad.html#a9">setNotch</a> (MY_FLOAT frequency, MY_FLOAT radius)</td></tr>
<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Set the filter coefficients for a notch at <em>frequency</em> (in Hz). </em> <a href="#a9"></a><em><br><br></td></tr>
<tr><td class="memItemLeft" nowrap align=right valign=top>void&nbsp;</td><td class="memItemRight" valign=bottom><a class="el" href="classBiQuad.html#a10">setEqualGainZeroes</a> ()</td></tr>
<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Sets the filter zeroes for equal resonance gain. </em> <a href="#a10"></a><em><br><br></td></tr>
<tr><td class="memItemLeft" nowrap align=right valign=top>void&nbsp;</td><td class="memItemRight" valign=bottom><a class="el" href="classBiQuad.html#a11">setGain</a> (MY_FLOAT theGain)</td></tr>
<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Set the filter gain. </em> <a href="#a11"></a><em><br><br></td></tr>
<tr><td class="memItemLeft" nowrap align=right valign=top><a class="anchor" name="a12" doxytag="BiQuad::getGain" ></a>
MY_FLOAT&nbsp;</td><td class="memItemRight" valign=bottom><a class="el" href="classBiQuad.html#a12">getGain</a> (void) const </td></tr>
<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Return the current filter gain. <br><br></td></tr>
<tr><td class="memItemLeft" nowrap align=right valign=top><a class="anchor" name="a13" doxytag="BiQuad::lastOut" ></a>
MY_FLOAT&nbsp;</td><td class="memItemRight" valign=bottom><a class="el" href="classBiQuad.html#a13">lastOut</a> (void) const </td></tr>
<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Return the last computed output value. <br><br></td></tr>
<tr><td class="memItemLeft" nowrap align=right valign=top><a class="anchor" name="a14" doxytag="BiQuad::tick" ></a>
MY_FLOAT&nbsp;</td><td class="memItemRight" valign=bottom><a class="el" href="classBiQuad.html#a14">tick</a> (MY_FLOAT sample)</td></tr>
<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Input one sample to the filter and return one output. <br><br></td></tr>
<tr><td class="memItemLeft" nowrap align=right valign=top><a class="anchor" name="a15" doxytag="BiQuad::tick" ></a>
MY_FLOAT *&nbsp;</td><td class="memItemRight" valign=bottom><a class="el" href="classBiQuad.html#a15">tick</a> (MY_FLOAT *vector, unsigned int vectorSize)</td></tr>
<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Input <em>vectorSize</em> samples to the filter and return an equal number of outputs in <em>vector</em>. <br><br></td></tr>
</table>
<hr><a name="_details"></a><h2>Detailed Description</h2>
STK biquad (two-pole, two-zero) filter class.
<p>
This protected <a class="el" href="classFilter.html">Filter</a> subclass implements a two-pole, two-zero digital filter. A method is provided for creating a resonance in the frequency response while maintaining a constant filter gain.<p>
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
<p>
<p>
Definition at line <a class="el" href="BiQuad_8h-source.html#l00020">20</a> of file <a class="el" href="BiQuad_8h-source.html">BiQuad.h</a>.<hr><h2>Member Function Documentation</h2>
<a class="anchor" name="a8" doxytag="BiQuad::setResonance" ></a><p>
<table class="mdTable" width="100%" cellpadding="2" cellspacing="0">
<tr>
<td class="mdRow">
<table cellpadding="0" cellspacing="0" border="0">
<tr>
<td class="md" nowrap valign="top"> void BiQuad::setResonance </td>
<td class="md" valign="top">(&nbsp;</td>
<td class="md" nowrap valign="top">MY_FLOAT&nbsp;</td>
<td class="mdname" nowrap> <em>frequency</em>, </td>
</tr>
<tr>
<td></td>
<td></td>
<td class="md" nowrap>MY_FLOAT&nbsp;</td>
<td class="mdname" nowrap> <em>radius</em>, </td>
</tr>
<tr>
<td></td>
<td></td>
<td class="md" nowrap>bool&nbsp;</td>
<td class="mdname" nowrap> <em>normalize</em> = FALSE</td>
</tr>
<tr>
<td></td>
<td class="md">)&nbsp;</td>
<td class="md" colspan="2"></td>
</tr>
</table>
</td>
</tr>
</table>
<table cellspacing=5 cellpadding=0 border=0>
<tr>
<td>
&nbsp;
</td>
<td>
<p>
Sets the filter coefficients for a resonance at <em>frequency</em> (in Hz).
<p>
This method determines the filter coefficients corresponding to two complex-conjugate poles with the given <em>frequency</em> (in Hz) and <em>radius</em> from the z-plane origin. If <em>normalize</em> is true, the filter zeros are placed at z = 1, z = -1, and the coefficients are then normalized to produce a constant unity peak gain (independent of the filter <em>gain</em> parameter). The resulting filter frequency response has a resonance at the given <em>frequency</em>. The closer the poles are to the unit-circle (<em>radius</em> close to one), the narrower the resulting resonance width. </td>
</tr>
</table>
<a class="anchor" name="a9" doxytag="BiQuad::setNotch" ></a><p>
<table class="mdTable" width="100%" cellpadding="2" cellspacing="0">
<tr>
<td class="mdRow">
<table cellpadding="0" cellspacing="0" border="0">
<tr>
<td class="md" nowrap valign="top"> void BiQuad::setNotch </td>
<td class="md" valign="top">(&nbsp;</td>
<td class="md" nowrap valign="top">MY_FLOAT&nbsp;</td>
<td class="mdname" nowrap> <em>frequency</em>, </td>
</tr>
<tr>
<td></td>
<td></td>
<td class="md" nowrap>MY_FLOAT&nbsp;</td>
<td class="mdname" nowrap> <em>radius</em></td>
</tr>
<tr>
<td></td>
<td class="md">)&nbsp;</td>
<td class="md" colspan="2"></td>
</tr>
</table>
</td>
</tr>
</table>
<table cellspacing=5 cellpadding=0 border=0>
<tr>
<td>
&nbsp;
</td>
<td>
<p>
Set the filter coefficients for a notch at <em>frequency</em> (in Hz).
<p>
This method determines the filter coefficients corresponding to two complex-conjugate zeros with the given <em>frequency</em> (in Hz) and <em>radius</em> from the z-plane origin. No filter normalization is attempted. </td>
</tr>
</table>
<a class="anchor" name="a10" doxytag="BiQuad::setEqualGainZeroes" ></a><p>
<table class="mdTable" width="100%" cellpadding="2" cellspacing="0">
<tr>
<td class="mdRow">
<table cellpadding="0" cellspacing="0" border="0">
<tr>
<td class="md" nowrap valign="top"> void BiQuad::setEqualGainZeroes </td>
<td class="md" valign="top">(&nbsp;</td>
<td class="mdname1" valign="top" nowrap> </td>
<td class="md" valign="top">&nbsp;)&nbsp;</td>
<td class="md" nowrap></td>
</tr>
</table>
</td>
</tr>
</table>
<table cellspacing=5 cellpadding=0 border=0>
<tr>
<td>
&nbsp;
</td>
<td>
<p>
Sets the filter zeroes for equal resonance gain.
<p>
When using the filter as a resonator, zeroes places at z = 1, z = -1 will result in a constant gain at resonance of 1 / (1 - R), where R is the pole radius setting. </td>
</tr>
</table>
<a class="anchor" name="a11" doxytag="BiQuad::setGain" ></a><p>
<table class="mdTable" width="100%" cellpadding="2" cellspacing="0">
<tr>
<td class="mdRow">
<table cellpadding="0" cellspacing="0" border="0">
<tr>
<td class="md" nowrap valign="top"> void BiQuad::setGain </td>
<td class="md" valign="top">(&nbsp;</td>
<td class="md" nowrap valign="top">MY_FLOAT&nbsp;</td>
<td class="mdname1" valign="top" nowrap> <em>theGain</em> </td>
<td class="md" valign="top">&nbsp;)&nbsp;</td>
<td class="md" nowrap><code> [virtual]</code></td>
</tr>
</table>
</td>
</tr>
</table>
<table cellspacing=5 cellpadding=0 border=0>
<tr>
<td>
&nbsp;
</td>
<td>
<p>
Set the filter gain.
<p>
The gain is applied at the filter input and does not affect the coefficient values. The default gain value is 1.0.
<p>
Reimplemented from <a class="el" href="classFilter.html#a7">Filter</a>. </td>
</tr>
</table>
<hr>The documentation for this class was generated from the following file:<ul>
<li><a class="el" href="BiQuad_8h-source.html">BiQuad.h</a></ul>
<HR>
<table>
<tr><td><A HREF="http://www-ccrma.stanford.edu/software/stk/"><I>The Synthesis ToolKit in C++ (STK)</I></A></td></tr>
<tr><td>&copy;1995-2004 Perry R. Cook and Gary P. Scavone. All Rights Reserved.</td></tr>
</table>
</BODY>
</HTML>