Files
stk/projects/examples/controlbee.cpp
Gary Scavone d199342e86 Version 4.3.1
2013-09-29 23:07:08 +02:00

175 lines
4.4 KiB
C++

// controlbee.cpp STK tutorial program
#include "BeeThree.h"
#include "RtAudio.h"
#include "Messager.h"
#include "SKINI.msg"
#include <math.h>
#include <algorithm>
using std::min;
void usage(void) {
// Error function in case of incorrect command-line
// argument specifications.
std::cout << "\nuseage: controlbee file\n";
std::cout << " where file = a SKINI scorefile.\n\n";
exit(0);
}
// The TickData structure holds all the class instances and data that
// are shared by the various processing functions.
struct TickData {
Instrmnt *instrument;
Messager messager;
Skini::Message message;
int counter;
bool haveMessage;
bool done;
// Default constructor.
TickData()
: instrument(0), counter(0), haveMessage(false), done( false ) {}
};
#define DELTA_CONTROL_TICKS 64 // default sample frames between control input checks
// The processMessage() function encapsulates the handling of control
// messages. It can be easily relocated within a program structure
// depending on the desired scheduling scheme.
void processMessage( TickData* data )
{
register StkFloat value1 = data->message.floatValues[0];
register StkFloat value2 = data->message.floatValues[1];
switch( data->message.type ) {
case __SK_Exit_:
data->done = true;
return;
case __SK_NoteOn_:
if ( value2 == 0.0 ) // velocity is zero ... really a NoteOff
data->instrument->noteOff( 0.5 );
else { // a NoteOn
StkFloat frequency = 220.0 * pow( 2.0, (value1 - 57.0) / 12.0 );
data->instrument->noteOn( frequency, value2 * ONE_OVER_128 );
}
break;
case __SK_NoteOff_:
data->instrument->noteOff( value2 * ONE_OVER_128 );
break;
case __SK_ControlChange_:
data->instrument->controlChange( (int) value1, value2 );
break;
case __SK_AfterTouch_:
data->instrument->controlChange( 128, value1 );
} // end of switch
data->haveMessage = false;
return;
}
// This tick() function handles sample computation and scheduling of
// control updates. It will be called automatically when the system
// needs a new buffer of audio samples.
int tick( void *outputBuffer, void *inputBuffer, unsigned int nBufferFrames,
double streamTime, RtAudioStreamStatus status, void *dataPointer )
{
TickData *data = (TickData *) dataPointer;
register StkFloat *samples = (StkFloat *) outputBuffer;
int counter, nTicks = (int) nBufferFrames;
while ( nTicks > 0 && !data->done ) {
if ( !data->haveMessage ) {
data->messager.popMessage( data->message );
if ( data->message.type > 0 ) {
data->counter = (long) (data->message.time * Stk::sampleRate());
data->haveMessage = true;
}
else
data->counter = DELTA_CONTROL_TICKS;
}
counter = min( nTicks, data->counter );
data->counter -= counter;
for ( int i=0; i<counter; i++ ) {
*samples++ = data->instrument->tick();
nTicks--;
}
if ( nTicks == 0 ) break;
// Process control messages.
if ( data->haveMessage ) processMessage( data );
}
return 0;
}
int main( int argc, char *argv[] )
{
if ( argc != 2 ) usage();
// Set the global sample rate and rawwave path before creating class instances.
Stk::setSampleRate( 44100.0 );
Stk::setRawwavePath( "../../rawwaves/" );
TickData data;
RtAudio dac;
// Figure out how many bytes in an StkFloat and setup the RtAudio stream.
RtAudio::StreamParameters parameters;
parameters.deviceId = dac.getDefaultOutputDevice();
parameters.nChannels = 1;
RtAudioFormat format = ( sizeof(StkFloat) == 8 ) ? RTAUDIO_FLOAT64 : RTAUDIO_FLOAT32;
unsigned int bufferFrames = RT_BUFFER_SIZE;
try {
dac.openStream( &parameters, NULL, format, (unsigned int)Stk::sampleRate(), &bufferFrames, &tick, (void *)&data );
}
catch ( RtError &error ) {
error.printMessage();
goto cleanup;
}
try {
// Define and load the BeeThree instrument
data.instrument = new BeeThree();
}
catch ( StkError & ) {
goto cleanup;
}
if ( data.messager.setScoreFile( argv[1] ) == false )
goto cleanup;
try {
dac.startStream();
}
catch ( RtError &error ) {
error.printMessage();
goto cleanup;
}
// Block waiting until callback signals done.
while ( !data.done )
Stk::sleep( 100 );
// Shut down the output stream.
try {
dac.closeStream();
}
catch ( RtError &error ) {
error.printMessage();
}
cleanup:
delete data.instrument;
return 0;
}