Files
stk/include/Flute.h
Gary Scavone baca57040b Version 4.4.2
2013-09-29 23:15:24 +02:00

130 lines
3.5 KiB
C++

#ifndef STK_FLUTE_H
#define STK_FLUTE_H
#include "Instrmnt.h"
#include "JetTable.h"
#include "DelayL.h"
#include "OnePole.h"
#include "PoleZero.h"
#include "Noise.h"
#include "ADSR.h"
#include "SineWave.h"
namespace stk {
/***************************************************/
/*! \class Flute
\brief STK flute physical model class.
This class implements a simple flute
physical model, as discussed by Karjalainen,
Smith, Waryznyk, etc. The jet model uses
a polynomial, a la Cook.
This is a digital waveguide model, making its
use possibly subject to patents held by Stanford
University, Yamaha, and others.
Control Change Numbers:
- Jet Delay = 2
- Noise Gain = 4
- Vibrato Frequency = 11
- Vibrato Gain = 1
- Breath Pressure = 128
by Perry R. Cook and Gary P. Scavone, 1995 - 2010.
*/
/***************************************************/
class Flute : public Instrmnt
{
public:
//! Class constructor, taking the lowest desired playing frequency.
/*!
An StkError will be thrown if the rawwave path is incorrectly set.
*/
Flute( StkFloat lowestFrequency );
//! Class destructor.
~Flute( void );
//! Reset and clear all internal state.
void clear( void );
//! Set instrument parameters for a particular frequency.
void setFrequency( StkFloat frequency );
//! Set the reflection coefficient for the jet delay (-1.0 - 1.0).
void setJetReflection( StkFloat coefficient );
//! Set the reflection coefficient for the air column delay (-1.0 - 1.0).
void setEndReflection( StkFloat coefficient );
//! Set the length of the jet delay in terms of a ratio of jet delay to air column delay lengths.
void setJetDelay( StkFloat aRatio );
//! Apply breath velocity to instrument with given amplitude and rate of increase.
void startBlowing( StkFloat amplitude, StkFloat rate );
//! Decrease breath velocity with given rate of decrease.
void stopBlowing( StkFloat rate );
//! Start a note with the given frequency and amplitude.
void noteOn( StkFloat frequency, StkFloat amplitude );
//! Stop a note with the given amplitude (speed of decay).
void noteOff( StkFloat amplitude );
//! Perform the control change specified by \e number and \e value (0.0 - 128.0).
void controlChange( int number, StkFloat value );
//! Compute and return one output sample.
StkFloat tick( unsigned int channel = 0 );
protected:
DelayL jetDelay_;
DelayL boreDelay_;
JetTable jetTable_;
OnePole filter_;
PoleZero dcBlock_;
Noise noise_;
ADSR adsr_;
SineWave vibrato_;
unsigned long length_;
StkFloat lastFrequency_;
StkFloat maxPressure_;
StkFloat jetReflection_;
StkFloat endReflection_;
StkFloat noiseGain_;
StkFloat vibratoGain_;
StkFloat outputGain_;
StkFloat jetRatio_;
};
inline StkFloat Flute :: tick( unsigned int )
{
StkFloat pressureDiff;
StkFloat breathPressure;
// Calculate the breath pressure (envelope + noise + vibrato)
breathPressure = maxPressure_ * adsr_.tick();
breathPressure += breathPressure * ( noiseGain_ * noise_.tick() + vibratoGain_ * vibrato_.tick() );
StkFloat temp = filter_.tick( boreDelay_.lastOut() );
temp = dcBlock_.tick( temp ); // Block DC on reflection.
pressureDiff = breathPressure - (jetReflection_ * temp);
pressureDiff = jetDelay_.tick( pressureDiff );
pressureDiff = jetTable_.tick( pressureDiff ) + (endReflection_ * temp);
lastFrame_[0] = (StkFloat) 0.3 * boreDelay_.tick( pressureDiff );
lastFrame_[0] *= outputGain_;
return lastFrame_[0];
}
} // stk namespace
#endif