Files
stk/projects/ragamatic/ragamat.cpp

344 lines
10 KiB
C++

/************** Test Main Program Individual Voice *********************/
#include "SKINImsg.h"
#include "Instrmnt.h"
#include "JCRev.h"
#include "Drone.h"
#include "Sitar.h"
#include "Tabla.h"
#include "VoicDrum.h"
#include "Messager.h"
#include "RtAudio.h"
#include <signal.h>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cstdlib>
using std::min;
using namespace stk;
StkFloat float_random(StkFloat max) // Return random float between 0.0 and max
{
StkFloat temp = (StkFloat) (max * rand() / (RAND_MAX + 1.0) );
return temp;
}
void usage(void) {
// Error function in case of incorrect command-line argument specifications.
std::cout << "\nuseage: ragamat flags \n";
std::cout << " where flag = -s RATE to specify a sample rate,\n";
std::cout << " flag = -ip for realtime SKINI input by pipe\n";
std::cout << " (won't work under Win95/98),\n";
std::cout << " and flag = -is <port> for realtime SKINI input by socket.\n";
exit(0);
}
bool done;
static void finish(int ignore){ done = true; }
// The TickData structure holds all the class instances and data that
// are shared by the various processing functions.
struct TickData {
JCRev reverbs[2];
Drone drones[3];
Sitar sitar;
VoicDrum voicDrums;
Tabla tabla;
Messager messager;
Skini::Message message;
StkFloat lastSample;
StkFloat t60;
int counter;
bool settling;
bool haveMessage;
StkFloat droneChance, noteChance;
StkFloat drumChance, voiceChance;
int tempo;
int chanceCounter;
int key;
int ragaStep;
int ragaPoint;
int endPhase;
StkFloat rateScaler;
// Default constructor.
TickData()
: t60(4.0), counter(0),
settling( false ), haveMessage( false ), droneChance(0.01), noteChance(0.01),
drumChance(0.0), voiceChance(0.0), tempo(3000), chanceCounter(3000), key(0), ragaPoint(6), endPhase(0) {}
};
// Raga key numbers and drone frequencies.
const int ragaUp[2][13] = {{57, 60, 62, 64, 65, 68, 69, 71, 72, 76, 77, 81},
{52, 54, 55, 57, 59, 60, 63, 64, 66, 67, 71, 72}};
const int ragaDown[2][13] = {{57, 60, 62, 64, 65, 67, 69, 71, 72, 76, 79, 81},
{48, 52, 53, 55, 57, 59, 60, 64, 66, 68, 70, 72}};
StkFloat droneFreqs[3] = { 55.0, 82.5, 220.0 };
#define DELTA_CONTROL_TICKS 64 // default sample frames between control input checks
// The processMessage() function encapsulates the handling of control
// messages. It can be easily relocated within a program structure
// depending on the desired scheduling scheme.
void processMessage( TickData* data )
{
register unsigned int value1 = data->message.intValues[0];
register StkFloat value2 = data->message.floatValues[1];
register StkFloat temp = value2 * ONE_OVER_128;
switch( data->message.type ) {
case __SK_Exit_:
if ( data->settling == false ) goto settle;
if ( data->endPhase < 5 ) return;
done = true;
return;
case __SK_ControlChange_:
switch ( value1 ) {
case 1:
data->droneChance = temp;
break;
case 2:
data->noteChance = temp;
break;
case 4:
data->voiceChance = temp;
break;
case 7:
data->tempo = (int) (11025 - value2 * 70.0 );
break;
case 11:
data->drumChance = temp;
break;
case 64:
if ( value2 == 0.0 ) {
data->key = 1;
droneFreqs[0] = 55.0;
droneFreqs[1] = 82.5;
droneFreqs[2] = 220.0;
}
else {
data->key = 0;
droneFreqs[0] = 82.5;
droneFreqs[1] = 123.5;
droneFreqs[2] = 330.0;
}
break;
default:
break;
}
} // end of type switch
data->haveMessage = false;
return;
settle:
// Exit and program change messages are preceeded with a short settling period.
data->counter = (int) (data->t60 * Stk::sampleRate());
data->drones[1].noteOn( droneFreqs[1], 0.1 );
data->settling = true;
std::cout << "What Need Have I for This?" << std::endl;
}
// The tick() function handles sample computation and scheduling of
// control updates. It will be called automatically by RtAudio when
// the system needs a new buffer of audio samples.
int tick( void *outputBuffer, void *inputBuffer, unsigned int nBufferFrames,
double streamTime, RtAudioStreamStatus status, void *dataPointer )
{
TickData *data = (TickData *) dataPointer;
register StkFloat temp, outs[2], *samples = (StkFloat *) outputBuffer;
int i, voiceNote, counter, nTicks = (int) nBufferFrames;
while ( nTicks > 0 && !done ) {
if ( !data->haveMessage ) {
data->messager.popMessage( data->message );
if ( data->message.type > 0 ) {
data->counter = (long) (data->message.time * Stk::sampleRate());
data->haveMessage = true;
}
else
data->counter = DELTA_CONTROL_TICKS;
}
counter = min( nTicks, data->counter );
data->counter -= counter;
for ( i=0; i<counter; i++ ) {
outs[0] = data->reverbs[0].tick( data->drones[0].tick() + data->drones[2].tick()
+ data->sitar.tick() );
outs[1] = data->reverbs[1].tick( 1.5 * data->drones[1].tick() + 0.5 * data->voicDrums.tick()
+ 0.5 * data->tabla.tick() );
// Mix a little left to right and back.
*samples++ = outs[0] + 0.3 * outs[1];
*samples++ = outs[1] + 0.3 * outs[0];
nTicks--;
// Do a bunch of random controls unless settling down to end.
if ( data->settling ) {
if ( data->counter == 0 ) {
data->counter = (int) (data->t60 * Stk::sampleRate());
if ( data->endPhase == 0 ) {
data->drones[2].noteOn( droneFreqs[2], 0.1 );
std::cout << "What Need Have I for This?" << std::endl;
}
else if ( data->endPhase == 1 ) {
data->drones[0].noteOn( droneFreqs[0], 0.1 );
std::cout << "RagaMatic finished ... " << std::endl;
}
else if ( data->endPhase == 2 ) {
std::cout << "All is Bliss ... " << std::endl;
}
else if ( data->endPhase == 3 ) {
std::cout << "All is Bliss ..." << std::endl;
}
data->endPhase++;
}
}
else {
data->chanceCounter--;
if (data->chanceCounter == 0) {
data->chanceCounter = (int) ( data->tempo / data->rateScaler );
if ( float_random(1.0) < data->droneChance )
data->drones[0].noteOn( droneFreqs[0], 0.1 );
if ( float_random(1.0) < data->droneChance )
data->drones[1].noteOn( droneFreqs[1], 0.1 );
if ( float_random(1.0) < data->droneChance )
data->drones[2].noteOn( droneFreqs[2], 0.1 );
if ( float_random(1.0) < data->noteChance ) {
temp = float_random(1.0);
if ( temp < 0.1) data->ragaStep = 0;
else if (temp < 0.5) data->ragaStep = 1;
else data->ragaStep = -1;
data->ragaPoint += data->ragaStep;
if ( data->ragaPoint < 0 )
data->ragaPoint -= ( 2 * data->ragaStep );
if ( data->ragaPoint > 11 ) data->ragaPoint = 11;
if ( data->ragaStep > 0 )
data->sitar.noteOn( Midi2Pitch[ragaUp[data->key][data->ragaPoint]],
0.05 + float_random(0.3) );
else
data->sitar.noteOn( Midi2Pitch[ragaDown[data->key][data->ragaPoint]],
0.05 + float_random(0.3) );
}
if ( float_random(1.0) < data->voiceChance ) {
voiceNote = (int) float_random(11);
data->voicDrums.noteOn( voiceNote, 0.3 + (0.4 * data->drumChance) +
float_random(0.3 * data->voiceChance));
}
if ( float_random(1.0) < data->drumChance ) {
voiceNote = (int) float_random(TABLA_NUMWAVES);
data->tabla.noteOn( voiceNote, 0.2 + (0.2 * data->drumChance) +
float_random(0.6 * data->drumChance));
}
}
}
}
if ( nTicks == 0 ) break;
// Process control messages.
if ( data->haveMessage ) processMessage( data );
}
return 0;
}
int main( int argc, char *argv[] )
{
TickData data;
RtAudio dac;
int i;
if ( argc < 2 || argc > 6 ) usage();
// If you want to change the default sample rate (set in Stk.h), do
// it before instantiating any objects! If the sample rate is
// specified in the command line, it will override this setting.
Stk::setSampleRate( 44100.0 );
// Parse the command-line arguments.
unsigned int port = 2001;
for ( i=1; i<argc; i++ ) {
if ( !strcmp( argv[i], "-is" ) ) {
if ( i+1 < argc && argv[i+1][0] != '-' ) port = atoi(argv[++i]);
data.messager.startSocketInput( port );
}
else if (!strcmp( argv[i], "-ip" ) )
data.messager.startStdInput();
else if ( !strcmp( argv[i], "-s" ) && ( i+1 < argc ) && argv[i+1][0] != '-')
Stk::setSampleRate( atoi(argv[++i]) );
else
usage();
}
// Allocate the dac here.
RtAudioFormat format = ( sizeof(StkFloat) == 8 ) ? RTAUDIO_FLOAT64 : RTAUDIO_FLOAT32;
RtAudio::StreamParameters parameters;
parameters.deviceId = dac.getDefaultOutputDevice();
parameters.nChannels = 2;
unsigned int bufferFrames = RT_BUFFER_SIZE;
try {
dac.openStream( &parameters, NULL, format, (unsigned int)Stk::sampleRate(), &bufferFrames, &tick, (void *)&data );
}
catch ( RtAudioError& error ) {
error.printMessage();
goto cleanup;
}
data.reverbs[0].setT60( data.t60 );
data.reverbs[0].setEffectMix( 0.5 );
data.reverbs[1].setT60( 2.0 );
data.reverbs[1].setEffectMix( 0.2 );
data.drones[0].noteOn( droneFreqs[0], 0.1 );
data.drones[1].noteOn( droneFreqs[1], 0.1 );
data.drones[2].noteOn( droneFreqs[2], 0.1 );
data.rateScaler = 22050.0 / Stk::sampleRate();
// Install an interrupt handler function.
(void) signal( SIGINT, finish );
// If realtime output, set our callback function and start the dac.
try {
dac.startStream();
}
catch ( RtAudioError &error ) {
error.printMessage();
goto cleanup;
}
// Setup finished.
while ( !done ) {
// Periodically check "done" status.
Stk::sleep( 50 );
}
// Shut down the output stream.
try {
dac.closeStream();
}
catch ( RtAudioError& error ) {
error.printMessage();
}
cleanup:
return 0;
}