Files
stk/projects/examples/threebees.cpp

182 lines
4.4 KiB
C++

// threebees.cpp STK tutorial program
#include "BeeThree.h"
#include "RtAudio.h"
#include "Messager.h"
#include "Voicer.h"
#include "SKINImsg.h"
#include <algorithm>
using std::min;
using namespace stk;
// The TickData structure holds all the class instances and data that
// are shared by the various processing functions.
struct TickData {
Voicer voicer;
Messager messager;
Skini::Message message;
int counter;
bool haveMessage;
bool done;
// Default constructor.
TickData()
: counter(0), haveMessage(false), done( false ) {}
};
#define DELTA_CONTROL_TICKS 64 // default sample frames between control input checks
// The processMessage() function encapsulates the handling of control
// messages. It can be easily relocated within a program structure
// depending on the desired scheduling scheme.
void processMessage( TickData* data )
{
register StkFloat value1 = data->message.floatValues[0];
register StkFloat value2 = data->message.floatValues[1];
switch( data->message.type ) {
case __SK_Exit_:
data->done = true;
return;
case __SK_NoteOn_:
if ( value2 == 0.0 ) // velocity is zero ... really a NoteOff
data->voicer.noteOff( value1, 64.0 );
else { // a NoteOn
data->voicer.noteOn( value1, value2 );
}
break;
case __SK_NoteOff_:
data->voicer.noteOff( value1, value2 );
break;
case __SK_ControlChange_:
data->voicer.controlChange( (int) value1, value2 );
break;
case __SK_AfterTouch_:
data->voicer.controlChange( 128, value1 );
case __SK_PitchChange_:
data->voicer.setFrequency( value1 );
break;
case __SK_PitchBend_:
data->voicer.pitchBend( value1 );
} // end of switch
data->haveMessage = false;
return;
}
// This tick() function handles sample computation and scheduling of
// control updates. It will be called automatically when the system
// needs a new buffer of audio samples.
int tick( void *outputBuffer, void *inputBuffer, unsigned int nBufferFrames,
double streamTime, RtAudioStreamStatus status, void *dataPointer )
{
TickData *data = (TickData *) dataPointer;
register StkFloat *samples = (StkFloat *) outputBuffer;
int counter, nTicks = (int) nBufferFrames;
while ( nTicks > 0 && !data->done ) {
if ( !data->haveMessage ) {
data->messager.popMessage( data->message );
if ( data->message.type > 0 ) {
data->counter = (long) (data->message.time * Stk::sampleRate());
data->haveMessage = true;
}
else
data->counter = DELTA_CONTROL_TICKS;
}
counter = min( nTicks, data->counter );
data->counter -= counter;
for ( int i=0; i<counter; i++ ) {
*samples++ = data->voicer.tick();
nTicks--;
}
if ( nTicks == 0 ) break;
// Process control messages.
if ( data->haveMessage ) processMessage( data );
}
return 0;
}
int main()
{
// Set the global sample rate and rawwave path before creating class instances.
Stk::setSampleRate( 44100.0 );
Stk::setRawwavePath( "../../rawwaves/" );
int i;
TickData data;
RtAudio dac;
Instrmnt *instrument[3];
for ( i=0; i<3; i++ ) instrument[i] = 0;
// Figure out how many bytes in an StkFloat and setup the RtAudio stream.
RtAudio::StreamParameters parameters;
parameters.deviceId = dac.getDefaultOutputDevice();
parameters.nChannels = 1;
RtAudioFormat format = ( sizeof(StkFloat) == 8 ) ? RTAUDIO_FLOAT64 : RTAUDIO_FLOAT32;
unsigned int bufferFrames = RT_BUFFER_SIZE;
try {
dac.openStream( &parameters, NULL, format, (unsigned int)Stk::sampleRate(), &bufferFrames, &tick, (void *)&data );
}
catch ( RtAudioError &error ) {
error.printMessage();
goto cleanup;
}
try {
// Define and load the BeeThree instruments
for ( i=0; i<3; i++ )
instrument[i] = new BeeThree();
}
catch ( StkError & ) {
goto cleanup;
}
// "Add" the instruments to the voicer.
for ( i=0; i<3; i++ )
data.voicer.addInstrument( instrument[i] );
if ( data.messager.startStdInput() == false )
goto cleanup;
try {
dac.startStream();
}
catch ( RtAudioError &error ) {
error.printMessage();
goto cleanup;
}
// Block waiting until callback signals done.
while ( !data.done )
Stk::sleep( 100 );
// Shut down the callback and output stream.
try {
dac.closeStream();
}
catch ( RtAudioError &error ) {
error.printMessage();
}
cleanup:
for ( i=0; i<3; i++ ) delete instrument[i];
return 0;
}