Files
stk/projects/effects/effects.cpp

297 lines
8.4 KiB
C++

/************** Effects Program *********************/
#include "Skini.h"
#include "SKINImsg.h"
#include "Envelope.h"
#include "PRCRev.h"
#include "JCRev.h"
#include "NRev.h"
#include "FreeVerb.h"
#include "Echo.h"
#include "PitShift.h"
#include "LentPitShift.h"
#include "Chorus.h"
#include "Messager.h"
#include "RtAudio.h"
#include <signal.h>
#include <cstring>
#include <iostream>
#include <algorithm>
using std::min;
using namespace stk;
void usage(void) {
// Error function in case of incorrect command-line argument specifications
std::cout << "\nuseage: effects flags \n";
std::cout << " where flag = -s RATE to specify a sample rate,\n";
std::cout << " flag = -ip for realtime SKINI input by pipe\n";
std::cout << " (won't work under Win95/98),\n";
std::cout << " and flag = -is <port> for realtime SKINI input by socket.\n";
exit(0);
}
bool done;
static void finish(int ignore){ done = true; }
// The TickData structure holds all the class instances and data that
// are shared by the various processing functions.
struct TickData {
unsigned int effectId;
PRCRev prcrev;
JCRev jcrev;
NRev nrev;
FreeVerb frev;
Echo echo;
PitShift shifter;
LentPitShift lshifter;
Chorus chorus;
Envelope envelope;
Messager messager;
Skini::Message message;
StkFloat lastSample;
StkFloat t60;
int counter;
bool settling;
bool haveMessage;
// Default constructor.
TickData()
: effectId(0), t60(1.0), counter(0),
settling( false ), haveMessage( false ) {}
};
#define DELTA_CONTROL_TICKS 64 // default sample frames between control input checks
// The processMessage() function encapsulates the handling of control
// messages. It can be easily relocated within a program structure
// depending on the desired scheduling scheme.
void processMessage( TickData* data )
{
register unsigned int value1 = data->message.intValues[0];
register StkFloat value2 = data->message.floatValues[1];
register StkFloat temp = value2 * ONE_OVER_128;
switch( data->message.type ) {
case __SK_Exit_:
if ( data->settling == false ) goto settle;
done = true;
return;
case __SK_NoteOn_:
if ( value2 == 0.0 ) // velocity is zero ... really a NoteOff
data->envelope.setTarget( 0.0 );
else // a NoteOn
data->envelope.setTarget( 1.0 );
break;
case __SK_NoteOff_:
data->envelope.setTarget( 0.0 );
break;
case __SK_ControlChange_:
// Change all effect values so they are "synched" to the interface.
switch ( value1 ) {
case 20: { // effect type change
int type = data->message.intValues[1];
data->effectId = (unsigned int) type;
break;
}
case 22: // effect parameter change 1
data->echo.setDelay( (unsigned long) (temp * Stk::sampleRate() * 0.95) );
data->lshifter.setShift( 1.4 * temp + 0.3 );
data->shifter.setShift( 1.4 * temp + 0.3 );
data->chorus.setModFrequency( temp );
data->prcrev.setT60( temp * 10.0 );
data->jcrev.setT60( temp * 10.0 );
data->nrev.setT60( temp * 10.0 );
data->frev.setDamping( temp );
break;
case 23: // effect parameter change 2
data->chorus.setModDepth( temp * 0.2 );
data->frev.setRoomSize( temp );
break;
case 44: // effect mix
data->echo.setEffectMix( temp );
data->shifter.setEffectMix( temp );
data->lshifter.setEffectMix( temp );
data->chorus.setEffectMix( temp );
data->prcrev.setEffectMix( temp );
data->jcrev.setEffectMix( temp );
data->nrev.setEffectMix( temp );
data->frev.setEffectMix( temp );
break;
default:
break;
}
} // end of type switch
data->haveMessage = false;
return;
settle:
// Exit and program change messages are preceeded with a short settling period.
data->envelope.setTarget( 0.0 );
data->counter = (int) (0.3 * data->t60 * Stk::sampleRate());
data->settling = true;
}
// The tick() function handles sample computation and scheduling of
// control updates. It will be called automatically by RtAudio when
// the system needs a new buffer of audio samples.
int tick( void *outputBuffer, void *inputBuffer, unsigned int nBufferFrames,
double streamTime, RtAudioStreamStatus status, void *dataPointer )
{
TickData *data = (TickData *) dataPointer;
register StkFloat *oSamples = (StkFloat *) outputBuffer, *iSamples = (StkFloat *) inputBuffer;
register StkFloat sample;
Effect *effect;
int i, counter, nTicks = (int) nBufferFrames;
while ( nTicks > 0 && !done ) {
if ( !data->haveMessage ) {
data->messager.popMessage( data->message );
if ( data->message.type > 0 ) {
data->counter = (long) (data->message.time * Stk::sampleRate());
data->haveMessage = true;
}
else
data->counter = DELTA_CONTROL_TICKS;
}
counter = min( nTicks, data->counter );
data->counter -= counter;
for ( i=0; i<counter; i++ ) {
if ( data->effectId < 3 ) { // Echo, PitShift and LentPitShift ... mono output
if ( data->effectId == 0 )
sample = data->envelope.tick() * data->echo.tick( *iSamples++ );
else if ( data->effectId == 1 )
sample = data->envelope.tick() * data->shifter.tick( *iSamples++ );
else
sample = data->envelope.tick() * data->lshifter.tick( *iSamples++ );
*oSamples++ = sample; // two channels interleaved
*oSamples++ = sample;
}
else { // Chorus or a reverb ... stereo output
if ( data->effectId == 3 ) {
data->chorus.tick( *iSamples++ );
effect = (Effect *) &(data->chorus);
}
else if ( data->effectId == 4 ) {
data->prcrev.tick( *iSamples++ );
effect = (Effect *) &(data->prcrev);
}
else if ( data->effectId == 5 ) {
data->jcrev.tick( *iSamples++ );
effect = (Effect *) &(data->jcrev);
}
else if ( data->effectId == 6 ) {
data->nrev.tick( *iSamples++ );
effect = (Effect *) &(data->nrev);
}
else {
data->frev.tick( *iSamples++ );
effect = (Effect *) &(data->frev);
}
const StkFrames& samples = effect->lastFrame();
*oSamples++ = data->envelope.tick() * samples[0];
*oSamples++ = data->envelope.lastOut() * samples[1];
}
nTicks--;
}
if ( nTicks == 0 ) break;
// Process control messages.
if ( data->haveMessage ) processMessage( data );
}
return 0;
}
int main( int argc, char *argv[] )
{
TickData data;
RtAudio adac;
int i;
if ( argc < 2 || argc > 6 ) usage();
// If you want to change the default sample rate (set in Stk.h), do
// it before instantiating any objects! If the sample rate is
// specified in the command line, it will override this setting.
Stk::setSampleRate( 44100.0 );
// Parse the command-line arguments.
unsigned int port = 2001;
for ( i=1; i<argc; i++ ) {
if ( !strcmp( argv[i], "-is" ) ) {
if ( i+1 < argc && argv[i+1][0] != '-' ) port = atoi(argv[++i]);
data.messager.startSocketInput( port );
}
else if (!strcmp( argv[i], "-ip" ) )
data.messager.startStdInput();
else if ( !strcmp( argv[i], "-s" ) && ( i+1 < argc ) && argv[i+1][0] != '-')
Stk::setSampleRate( atoi(argv[++i]) );
else
usage();
}
// Allocate the adac here.
RtAudioFormat format = ( sizeof(StkFloat) == 8 ) ? RTAUDIO_FLOAT64 : RTAUDIO_FLOAT32;
RtAudio::StreamParameters oparameters, iparameters;
oparameters.deviceId = adac.getDefaultOutputDevice();
oparameters.nChannels = 2;
iparameters.deviceId = adac.getDefaultInputDevice();
iparameters.nChannels = 1;
unsigned int bufferFrames = RT_BUFFER_SIZE;
try {
adac.openStream( &oparameters, &iparameters, format, (unsigned int)Stk::sampleRate(), &bufferFrames, &tick, (void *)&data );
}
catch ( RtAudioError& error ) {
error.printMessage();
goto cleanup;
}
data.envelope.setRate( 0.001 );
// Install an interrupt handler function.
(void) signal( SIGINT, finish );
// If realtime output, set our callback function and start the dac.
try {
adac.startStream();
}
catch ( RtAudioError &error ) {
error.printMessage();
goto cleanup;
}
// Setup finished.
while ( !done ) {
// Periodically check "done" status.
Stk::sleep( 50 );
}
// Shut down the output stream.
try {
adac.closeStream();
}
catch ( RtAudioError& error ) {
error.printMessage();
}
cleanup:
std::cout << "\neffects finished ... goodbye.\n\n";
return 0;
}