Files
stk/projects/demo/demo.cpp

330 lines
9.2 KiB
C++

// demo.cpp
//
// An example STK program that allows voice playback and control of
// most of the STK instruments.
#include "SKINImsg.h"
#include "WvOut.h"
#include "Instrmnt.h"
#include "JCRev.h"
#include "Voicer.h"
#include "Skini.h"
#include "RtAudio.h"
#if defined(__STK_REALTIME__)
#include "Mutex.h"
#endif
// Miscellaneous command-line parsing and instrument allocation
// functions are defined in utilites.cpp ... specific to this program.
#include "utilities.h"
#include <signal.h>
#include <iostream>
#include <algorithm>
#include <cmath>
using std::min;
bool done;
static void finish(int ignore){ done = true; }
using namespace stk;
// The TickData structure holds all the class instances and data that
// are shared by the various processing functions.
struct TickData {
WvOut **wvout;
Instrmnt **instrument;
Voicer *voicer;
JCRev reverb;
Messager messager;
Skini::Message message;
StkFloat volume;
StkFloat t60;
unsigned int nWvOuts;
int nVoices;
int currentVoice;
int channels;
int counter;
bool realtime;
bool settling;
bool haveMessage;
int frequency;
// Default constructor.
TickData()
: wvout(0), instrument(0), voicer(0), volume(1.0), t60(0.75),
nWvOuts(0), nVoices(1), currentVoice(0), channels(2), counter(0),
realtime( false ), settling( false ), haveMessage( false ) {}
};
#define DELTA_CONTROL_TICKS 64 // default sample frames between control input checks
// The processMessage() function encapsulates the handling of control
// messages. It can be easily relocated within a program structure
// depending on the desired scheduling scheme.
void processMessage( TickData* data )
{
register StkFloat value1 = data->message.floatValues[0];
register StkFloat value2 = data->message.floatValues[1];
// If only one instrument, allow messages from all channels to control it.
//int group = 1;
// if ( data->nVoices > 1 ) group = data->message.channel;
switch( data->message.type ) {
case __SK_Exit_:
if ( data->settling == false ) goto settle;
done = true;
return;
case __SK_NoteOn_:
if ( value2 > 0.0 ) { // velocity > 0
data->voicer->noteOn( value1, value2 );
break;
}
// else a note off, so continue to next case
case __SK_NoteOff_:
data->voicer->noteOff( value1, value2 );
break;
case __SK_ControlChange_:
if (value1 == 44.0)
data->reverb.setEffectMix(value2 * ONE_OVER_128);
else if (value1 == 7.0)
data->volume = value2 * ONE_OVER_128;
else if (value1 == 49.0)
data->voicer->setFrequency( value2 );
else if (value1 == 50.0)
data->voicer->controlChange( 128, value2 );
else if (value1 == 51.0)
data->frequency = data->message.intValues[1];
else if (value1 == 52.0) {
data->frequency += ( data->message.intValues[1] << 7 );
// Convert to a fractional MIDI note value
StkFloat note = 12.0 * log( data->frequency / 220.0 ) / log( 2.0 ) + 57.0;
data->voicer->setFrequency( note );
}
else
data->voicer->controlChange( (int) value1, value2 );
break;
case __SK_AfterTouch_:
data->voicer->controlChange( 128, value1 );
break;
case __SK_PitchChange_:
data->voicer->setFrequency( value1 );
break;
case __SK_PitchBend_:
data->voicer->pitchBend( value1 );
break;
case __SK_Volume_:
data->volume = value1 * ONE_OVER_128;
break;
case __SK_ProgramChange_:
if ( data->currentVoice == (int) value1 ) break;
// Two-stage program change process.
if ( data->settling == false ) goto settle;
// Stage 2: delete and reallocate new voice(s)
for ( int i=0; i<data->nVoices; i++ ) {
data->voicer->removeInstrument( data->instrument[i] );
delete data->instrument[i];
data->currentVoice = voiceByNumber( (int)value1, &data->instrument[i] );
if ( data->currentVoice < 0 )
data->currentVoice = voiceByNumber( 0, &data->instrument[i] );
data->voicer->addInstrument( data->instrument[i] );
data->settling = false;
}
} // end of switch
data->haveMessage = false;
return;
settle:
// Exit and program change messages are preceeded with a short settling period.
data->voicer->silence();
data->counter = (int) (0.3 * data->t60 * Stk::sampleRate());
data->settling = true;
}
// The tick() function handles sample computation and scheduling of
// control updates. If doing realtime audio output, it will be called
// automatically when the system needs a new buffer of audio samples.
int tick( void *outputBuffer, void *inputBuffer, unsigned int nBufferFrames,
double streamTime, RtAudioStreamStatus status, void *dataPointer )
{
TickData *data = (TickData *) dataPointer;
register StkFloat sample, *samples = (StkFloat *) outputBuffer;
int counter, nTicks = (int) nBufferFrames;
while ( nTicks > 0 && !done ) {
if ( !data->haveMessage ) {
data->messager.popMessage( data->message );
if ( data->message.type > 0 ) {
data->counter = (long) (data->message.time * Stk::sampleRate());
data->haveMessage = true;
}
else
data->counter = DELTA_CONTROL_TICKS;
}
counter = min( nTicks, data->counter );
data->counter -= counter;
for ( int i=0; i<counter; i++ ) {
sample = data->volume * data->reverb.tick( data->voicer->tick() );
for ( unsigned int j=0; j<data->nWvOuts; j++ ) data->wvout[j]->tick(sample);
if ( data->realtime )
for ( int k=0; k<data->channels; k++ ) *samples++ = sample;
nTicks--;
}
if ( nTicks == 0 ) break;
// Process control messages.
if ( data->haveMessage ) processMessage( data );
}
return 0;
}
int main( int argc, char *argv[] )
{
TickData data;
int i;
#if defined(__STK_REALTIME__)
RtAudio dac;
#endif
// If you want to change the default sample rate (set in Stk.h), do
// it before instantiating any objects! If the sample rate is
// specified in the command line, it will override this setting.
Stk::setSampleRate( 44100.0 );
// Depending on how you compile STK, you may need to explicitly set
// the path to the rawwave directory.
Stk::setRawwavePath( "../../rawwaves/" );
// By default, warning messages are not printed. If we want to see
// them, we need to specify that here.
Stk::showWarnings( true );
// Check the command-line arguments for errors and to determine
// the number of WvOut objects to be instantiated (in utilities.cpp).
data.nWvOuts = checkArgs( argc, argv );
data.wvout = (WvOut **) calloc( data.nWvOuts, sizeof(WvOut *) );
// Instantiate the instrument(s) type from the command-line argument
// (in utilities.cpp).
data.nVoices = countVoices( argc, argv );
data.instrument = (Instrmnt **) calloc( data.nVoices, sizeof(Instrmnt *) );
data.currentVoice = voiceByName( argv[1], &data.instrument[0] );
if ( data.currentVoice < 0 ) {
free( data.wvout );
free( data.instrument );
usage(argv[0]);
}
// If there was no error allocating the first voice, we should be fine for more.
for ( i=1; i<data.nVoices; i++ )
voiceByName( argv[1], &data.instrument[i] );
data.voicer = (Voicer *) new Voicer( 0.0 );
for ( i=0; i<data.nVoices; i++ )
data.voicer->addInstrument( data.instrument[i] );
// Parse the command-line flags, instantiate WvOut objects, and
// instantiate the input message controller (in utilities.cpp).
try {
data.realtime = parseArgs( argc, argv, data.wvout, data.messager );
}
catch (StkError &) {
goto cleanup;
}
// If realtime output, allocate the dac here.
#if defined(__STK_REALTIME__)
if ( data.realtime ) {
RtAudioFormat format = ( sizeof(StkFloat) == 8 ) ? RTAUDIO_FLOAT64 : RTAUDIO_FLOAT32;
RtAudio::StreamParameters parameters;
parameters.deviceId = dac.getDefaultOutputDevice();
parameters.nChannels = data.channels;
unsigned int bufferFrames = RT_BUFFER_SIZE;
try {
dac.openStream( &parameters, NULL, format, (unsigned int)Stk::sampleRate(), &bufferFrames, &tick, (void *)&data );
}
catch ( RtAudioError& error ) {
error.printMessage();
goto cleanup;
}
}
#endif
// Set the reverb parameters.
data.reverb.setT60( data.t60 );
data.reverb.setEffectMix(0.2);
// Install an interrupt handler function.
(void) signal(SIGINT, finish);
// If realtime output, set our callback function and start the dac.
#if defined(__STK_REALTIME__)
if ( data.realtime ) {
try {
dac.startStream();
}
catch ( RtAudioError &error ) {
error.printMessage();
goto cleanup;
}
}
#endif
// Setup finished.
while ( !done ) {
#if defined(__STK_REALTIME__)
if ( data.realtime )
// Periodically check "done" status.
Stk::sleep( 200 );
else
#endif
// Call the "tick" function to process data.
tick( NULL, NULL, 256, 0, 0, (void *)&data );
}
// Shut down the output stream.
#if defined(__STK_REALTIME__)
if ( data.realtime ) {
try {
dac.closeStream();
}
catch ( RtAudioError& error ) {
error.printMessage();
}
}
#endif
cleanup:
for ( i=0; i<(int)data.nWvOuts; i++ ) delete data.wvout[i];
free( data.wvout );
delete data.voicer;
for ( i=0; i<data.nVoices; i++ ) delete data.instrument[i];
free( data.instrument );
std::cout << "\nStk demo finished ... goodbye.\n\n";
return 0;
}