mirror of
https://github.com/thestk/stk
synced 2026-01-11 20:11:52 +00:00
330 lines
9.2 KiB
C++
330 lines
9.2 KiB
C++
// demo.cpp
|
|
//
|
|
// An example STK program that allows voice playback and control of
|
|
// most of the STK instruments.
|
|
|
|
#include "SKINImsg.h"
|
|
#include "WvOut.h"
|
|
#include "Instrmnt.h"
|
|
#include "JCRev.h"
|
|
#include "Voicer.h"
|
|
#include "Skini.h"
|
|
#include "RtAudio.h"
|
|
|
|
#if defined(__STK_REALTIME__)
|
|
#include "Mutex.h"
|
|
#endif
|
|
|
|
// Miscellaneous command-line parsing and instrument allocation
|
|
// functions are defined in utilites.cpp ... specific to this program.
|
|
#include "utilities.h"
|
|
|
|
#include <signal.h>
|
|
#include <iostream>
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
using std::min;
|
|
|
|
bool done;
|
|
static void finish(int ignore){ done = true; }
|
|
|
|
using namespace stk;
|
|
|
|
// The TickData structure holds all the class instances and data that
|
|
// are shared by the various processing functions.
|
|
struct TickData {
|
|
WvOut **wvout;
|
|
Instrmnt **instrument;
|
|
Voicer *voicer;
|
|
JCRev reverb;
|
|
Messager messager;
|
|
Skini::Message message;
|
|
StkFloat volume;
|
|
StkFloat t60;
|
|
unsigned int nWvOuts;
|
|
int nVoices;
|
|
int currentVoice;
|
|
int channels;
|
|
int counter;
|
|
bool realtime;
|
|
bool settling;
|
|
bool haveMessage;
|
|
int frequency;
|
|
|
|
// Default constructor.
|
|
TickData()
|
|
: wvout(0), instrument(0), voicer(0), volume(1.0), t60(0.75),
|
|
nWvOuts(0), nVoices(1), currentVoice(0), channels(2), counter(0),
|
|
realtime( false ), settling( false ), haveMessage( false ) {}
|
|
};
|
|
|
|
#define DELTA_CONTROL_TICKS 64 // default sample frames between control input checks
|
|
|
|
// The processMessage() function encapsulates the handling of control
|
|
// messages. It can be easily relocated within a program structure
|
|
// depending on the desired scheduling scheme.
|
|
void processMessage( TickData* data )
|
|
{
|
|
register StkFloat value1 = data->message.floatValues[0];
|
|
register StkFloat value2 = data->message.floatValues[1];
|
|
|
|
// If only one instrument, allow messages from all channels to control it.
|
|
//int group = 1;
|
|
// if ( data->nVoices > 1 ) group = data->message.channel;
|
|
|
|
switch( data->message.type ) {
|
|
|
|
case __SK_Exit_:
|
|
if ( data->settling == false ) goto settle;
|
|
done = true;
|
|
return;
|
|
|
|
case __SK_NoteOn_:
|
|
if ( value2 > 0.0 ) { // velocity > 0
|
|
data->voicer->noteOn( value1, value2 );
|
|
break;
|
|
}
|
|
// else a note off, so continue to next case
|
|
|
|
case __SK_NoteOff_:
|
|
data->voicer->noteOff( value1, value2 );
|
|
break;
|
|
|
|
case __SK_ControlChange_:
|
|
if (value1 == 44.0)
|
|
data->reverb.setEffectMix(value2 * ONE_OVER_128);
|
|
else if (value1 == 7.0)
|
|
data->volume = value2 * ONE_OVER_128;
|
|
else if (value1 == 49.0)
|
|
data->voicer->setFrequency( value2 );
|
|
else if (value1 == 50.0)
|
|
data->voicer->controlChange( 128, value2 );
|
|
else if (value1 == 51.0)
|
|
data->frequency = data->message.intValues[1];
|
|
else if (value1 == 52.0) {
|
|
data->frequency += ( data->message.intValues[1] << 7 );
|
|
// Convert to a fractional MIDI note value
|
|
StkFloat note = 12.0 * log( data->frequency / 220.0 ) / log( 2.0 ) + 57.0;
|
|
data->voicer->setFrequency( note );
|
|
}
|
|
else
|
|
data->voicer->controlChange( (int) value1, value2 );
|
|
break;
|
|
|
|
case __SK_AfterTouch_:
|
|
data->voicer->controlChange( 128, value1 );
|
|
break;
|
|
|
|
case __SK_PitchChange_:
|
|
data->voicer->setFrequency( value1 );
|
|
break;
|
|
|
|
case __SK_PitchBend_:
|
|
data->voicer->pitchBend( value1 );
|
|
break;
|
|
|
|
case __SK_Volume_:
|
|
data->volume = value1 * ONE_OVER_128;
|
|
break;
|
|
|
|
case __SK_ProgramChange_:
|
|
if ( data->currentVoice == (int) value1 ) break;
|
|
|
|
// Two-stage program change process.
|
|
if ( data->settling == false ) goto settle;
|
|
|
|
// Stage 2: delete and reallocate new voice(s)
|
|
for ( int i=0; i<data->nVoices; i++ ) {
|
|
data->voicer->removeInstrument( data->instrument[i] );
|
|
delete data->instrument[i];
|
|
data->currentVoice = voiceByNumber( (int)value1, &data->instrument[i] );
|
|
if ( data->currentVoice < 0 )
|
|
data->currentVoice = voiceByNumber( 0, &data->instrument[i] );
|
|
data->voicer->addInstrument( data->instrument[i] );
|
|
data->settling = false;
|
|
}
|
|
|
|
} // end of switch
|
|
|
|
data->haveMessage = false;
|
|
return;
|
|
|
|
settle:
|
|
// Exit and program change messages are preceeded with a short settling period.
|
|
data->voicer->silence();
|
|
data->counter = (int) (0.3 * data->t60 * Stk::sampleRate());
|
|
data->settling = true;
|
|
}
|
|
|
|
|
|
// The tick() function handles sample computation and scheduling of
|
|
// control updates. If doing realtime audio output, it will be called
|
|
// automatically when the system needs a new buffer of audio samples.
|
|
int tick( void *outputBuffer, void *inputBuffer, unsigned int nBufferFrames,
|
|
double streamTime, RtAudioStreamStatus status, void *dataPointer )
|
|
{
|
|
TickData *data = (TickData *) dataPointer;
|
|
register StkFloat sample, *samples = (StkFloat *) outputBuffer;
|
|
int counter, nTicks = (int) nBufferFrames;
|
|
|
|
while ( nTicks > 0 && !done ) {
|
|
|
|
if ( !data->haveMessage ) {
|
|
data->messager.popMessage( data->message );
|
|
if ( data->message.type > 0 ) {
|
|
data->counter = (long) (data->message.time * Stk::sampleRate());
|
|
data->haveMessage = true;
|
|
}
|
|
else
|
|
data->counter = DELTA_CONTROL_TICKS;
|
|
}
|
|
|
|
counter = min( nTicks, data->counter );
|
|
data->counter -= counter;
|
|
for ( int i=0; i<counter; i++ ) {
|
|
sample = data->volume * data->reverb.tick( data->voicer->tick() );
|
|
for ( unsigned int j=0; j<data->nWvOuts; j++ ) data->wvout[j]->tick(sample);
|
|
if ( data->realtime )
|
|
for ( int k=0; k<data->channels; k++ ) *samples++ = sample;
|
|
nTicks--;
|
|
}
|
|
if ( nTicks == 0 ) break;
|
|
|
|
// Process control messages.
|
|
if ( data->haveMessage ) processMessage( data );
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int main( int argc, char *argv[] )
|
|
{
|
|
TickData data;
|
|
int i;
|
|
|
|
#if defined(__STK_REALTIME__)
|
|
RtAudio dac;
|
|
#endif
|
|
|
|
// If you want to change the default sample rate (set in Stk.h), do
|
|
// it before instantiating any objects! If the sample rate is
|
|
// specified in the command line, it will override this setting.
|
|
Stk::setSampleRate( 44100.0 );
|
|
|
|
// Depending on how you compile STK, you may need to explicitly set
|
|
// the path to the rawwave directory.
|
|
Stk::setRawwavePath( "../../rawwaves/" );
|
|
|
|
// By default, warning messages are not printed. If we want to see
|
|
// them, we need to specify that here.
|
|
Stk::showWarnings( true );
|
|
|
|
// Check the command-line arguments for errors and to determine
|
|
// the number of WvOut objects to be instantiated (in utilities.cpp).
|
|
data.nWvOuts = checkArgs( argc, argv );
|
|
data.wvout = (WvOut **) calloc( data.nWvOuts, sizeof(WvOut *) );
|
|
|
|
// Instantiate the instrument(s) type from the command-line argument
|
|
// (in utilities.cpp).
|
|
data.nVoices = countVoices( argc, argv );
|
|
data.instrument = (Instrmnt **) calloc( data.nVoices, sizeof(Instrmnt *) );
|
|
data.currentVoice = voiceByName( argv[1], &data.instrument[0] );
|
|
if ( data.currentVoice < 0 ) {
|
|
free( data.wvout );
|
|
free( data.instrument );
|
|
usage(argv[0]);
|
|
}
|
|
// If there was no error allocating the first voice, we should be fine for more.
|
|
for ( i=1; i<data.nVoices; i++ )
|
|
voiceByName( argv[1], &data.instrument[i] );
|
|
|
|
data.voicer = (Voicer *) new Voicer( 0.0 );
|
|
for ( i=0; i<data.nVoices; i++ )
|
|
data.voicer->addInstrument( data.instrument[i] );
|
|
|
|
// Parse the command-line flags, instantiate WvOut objects, and
|
|
// instantiate the input message controller (in utilities.cpp).
|
|
try {
|
|
data.realtime = parseArgs( argc, argv, data.wvout, data.messager );
|
|
}
|
|
catch (StkError &) {
|
|
goto cleanup;
|
|
}
|
|
|
|
// If realtime output, allocate the dac here.
|
|
#if defined(__STK_REALTIME__)
|
|
if ( data.realtime ) {
|
|
RtAudioFormat format = ( sizeof(StkFloat) == 8 ) ? RTAUDIO_FLOAT64 : RTAUDIO_FLOAT32;
|
|
RtAudio::StreamParameters parameters;
|
|
parameters.deviceId = dac.getDefaultOutputDevice();
|
|
parameters.nChannels = data.channels;
|
|
unsigned int bufferFrames = RT_BUFFER_SIZE;
|
|
try {
|
|
dac.openStream( ¶meters, NULL, format, (unsigned int)Stk::sampleRate(), &bufferFrames, &tick, (void *)&data );
|
|
}
|
|
catch ( RtAudioError& error ) {
|
|
error.printMessage();
|
|
goto cleanup;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Set the reverb parameters.
|
|
data.reverb.setT60( data.t60 );
|
|
data.reverb.setEffectMix(0.2);
|
|
|
|
// Install an interrupt handler function.
|
|
(void) signal(SIGINT, finish);
|
|
|
|
// If realtime output, set our callback function and start the dac.
|
|
#if defined(__STK_REALTIME__)
|
|
if ( data.realtime ) {
|
|
try {
|
|
dac.startStream();
|
|
}
|
|
catch ( RtAudioError &error ) {
|
|
error.printMessage();
|
|
goto cleanup;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Setup finished.
|
|
while ( !done ) {
|
|
#if defined(__STK_REALTIME__)
|
|
if ( data.realtime )
|
|
// Periodically check "done" status.
|
|
Stk::sleep( 200 );
|
|
else
|
|
#endif
|
|
// Call the "tick" function to process data.
|
|
tick( NULL, NULL, 256, 0, 0, (void *)&data );
|
|
}
|
|
|
|
// Shut down the output stream.
|
|
#if defined(__STK_REALTIME__)
|
|
if ( data.realtime ) {
|
|
try {
|
|
dac.closeStream();
|
|
}
|
|
catch ( RtAudioError& error ) {
|
|
error.printMessage();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
cleanup:
|
|
|
|
for ( i=0; i<(int)data.nWvOuts; i++ ) delete data.wvout[i];
|
|
free( data.wvout );
|
|
|
|
delete data.voicer;
|
|
|
|
for ( i=0; i<data.nVoices; i++ ) delete data.instrument[i];
|
|
free( data.instrument );
|
|
|
|
std::cout << "\nStk demo finished ... goodbye.\n\n";
|
|
return 0;
|
|
}
|
|
|