Files
stk/src/Saxofony.cpp
2019-04-18 08:56:31 -04:00

178 lines
5.1 KiB
C++

/***************************************************/
/*! \class Saxofony
\brief STK faux conical bore reed instrument class.
This class implements a "hybrid" digital
waveguide instrument that can generate a
variety of wind-like sounds. It has also been
referred to as the "blowed string" model. The
waveguide section is essentially that of a
string, with one rigid and one lossy
termination. The non-linear function is a
reed table. The string can be "blown" at any
point between the terminations, though just as
with strings, it is impossible to excite the
system at either end. If the excitation is
placed at the string mid-point, the sound is
that of a clarinet. At points closer to the
"bridge", the sound is closer to that of a
saxophone. See Scavone (2002) for more details.
This is a digital waveguide model, making its
use possibly subject to patents held by Stanford
University, Yamaha, and others.
Control Change Numbers:
- Reed Stiffness = 2
- Reed Aperture = 26
- Noise Gain = 4
- Blow Position = 11
- Vibrato Frequency = 29
- Vibrato Gain = 1
- Breath Pressure = 128
by Perry R. Cook and Gary P. Scavone, 1995--2019.
*/
/***************************************************/
#include "Saxofony.h"
#include "SKINImsg.h"
namespace stk {
Saxofony :: Saxofony( StkFloat lowestFrequency )
{
if ( lowestFrequency <= 0.0 ) {
oStream_ << "Saxofony::Saxofony: argument is less than or equal to zero!";
handleError( StkError::FUNCTION_ARGUMENT );
}
unsigned long nDelays = (unsigned long) ( Stk::sampleRate() / lowestFrequency );
delays_[0].setMaximumDelay( nDelays + 1 );
delays_[1].setMaximumDelay( nDelays + 1 );
// Initialize blowing position to 0.2 of length.
position_ = 0.2;
reedTable_.setOffset( 0.7 );
reedTable_.setSlope( 0.3 );
vibrato_.setFrequency( 5.735 );
outputGain_ = 0.3;
noiseGain_ = 0.2;
vibratoGain_ = 0.1;
this->setFrequency( 220.0 );
this->clear();
}
Saxofony :: ~Saxofony( void )
{
}
void Saxofony :: clear( void )
{
delays_[0].clear();
delays_[1].clear();
filter_.clear();
}
void Saxofony :: setFrequency( StkFloat frequency )
{
#if defined(_STK_DEBUG_)
if ( frequency <= 0.0 ) {
oStream_ << "Saxofony::setFrequency: argument is less than or equal to zero!";
handleError( StkError::WARNING ); return;
}
#endif
// Account for filter delay and one sample "lastOut" delay.
StkFloat delay = ( Stk::sampleRate() / frequency ) - filter_.phaseDelay( frequency ) - 1.0;
delays_[0].setDelay( (1.0-position_) * delay );
delays_[1].setDelay( position_ * delay );
}
void Saxofony :: setBlowPosition( StkFloat position )
{
if ( position_ == position ) return;
if ( position < 0.0 ) position_ = 0.0;
else if ( position > 1.0 ) position_ = 1.0;
else position_ = position;
StkFloat totalDelay = delays_[0].getDelay();
totalDelay += delays_[1].getDelay();
delays_[0].setDelay( (1.0-position_) * totalDelay );
delays_[1].setDelay( position_ * totalDelay );
}
void Saxofony :: startBlowing( StkFloat amplitude, StkFloat rate )
{
if ( amplitude <= 0.0 || rate <= 0.0 ) {
oStream_ << "Saxofony::startBlowing: one or more arguments is less than or equal to zero!";
handleError( StkError::WARNING ); return;
}
envelope_.setRate( rate );
envelope_.setTarget( amplitude );
}
void Saxofony :: stopBlowing( StkFloat rate )
{
if ( rate <= 0.0 ) {
oStream_ << "Saxofony::stopBlowing: argument is less than or equal to zero!";
handleError( StkError::WARNING ); return;
}
envelope_.setRate( rate );
envelope_.setTarget( 0.0 );
}
void Saxofony :: noteOn( StkFloat frequency, StkFloat amplitude )
{
this->setFrequency( frequency );
this->startBlowing( 0.55 + (amplitude * 0.30), amplitude * 0.005 );
outputGain_ = amplitude + 0.001;
}
void Saxofony :: noteOff( StkFloat amplitude )
{
this->stopBlowing( amplitude * 0.01 );
}
void Saxofony :: controlChange( int number, StkFloat value )
{
#if defined(_STK_DEBUG_)
if ( Stk::inRange( value, 0.0, 128.0 ) == false ) {
oStream_ << "Saxofony::controlChange: value (" << value << ") is out of range!";
handleError( StkError::WARNING ); return;
}
#endif
StkFloat normalizedValue = value * ONE_OVER_128;
if (number == __SK_ReedStiffness_) // 2
reedTable_.setSlope( 0.1 + (0.4 * normalizedValue) );
else if (number == __SK_NoiseLevel_) // 4
noiseGain_ = ( normalizedValue * 0.4 );
else if (number == 29) // 29
vibrato_.setFrequency( normalizedValue * 12.0 );
else if (number == __SK_ModWheel_) // 1
vibratoGain_ = ( normalizedValue * 0.5 );
else if (number == __SK_AfterTouch_Cont_) // 128
envelope_.setValue( normalizedValue );
else if (number == 11) // 11
this->setBlowPosition( normalizedValue );
else if (number == 26) // reed table offset
reedTable_.setOffset(0.4 + ( normalizedValue * 0.6));
#if defined(_STK_DEBUG_)
else {
oStream_ << "Saxofony::controlChange: undefined control number (" << number << ")!";
handleError( StkError::WARNING );
}
#endif
}
} // stk namespace