Files
stk/projects/eguitar/eguitar.cpp

372 lines
12 KiB
C++

// Eguitar.cpp
//
// This is a program to create a simple electric guitar model using
// the STK Guitar class. The is model is derived in part from an
// implementation made by Nicholas Donaldson at McGill University in
// 2009. The distortion model is poor, using a simple soft-clipping
// expression provided by Charles R. Sullivan in "Extending the
// Karplus-String Algorithm to Synthesize Electric Guitar Timbres with
// Distortion and Feedback," Computer Music Journal, Vol.14 No.3, Fall
// 1990. Other distortion models would be better, such as that found
// in Pakarinen and Yeh's "A Review of Digital Techniques for Modeling
// Vacuum-Tube Guitar Amplifiers," Computer Music Journal, Vol 33
// No. 2, Summer 2009.
//
// This program performs simple voice management if all noteOn and
// noteOff events are on channel 0. Otherwise, channel values > 0 are
// mapped to specific string numbers. By default, the program creates
// a 6-string guitar. If the normalized noteOn() velocity is < 0.2, a
// string is undamped but not plucked (this is implemented in the
// stk::Guitar class). Thus, you can lightly depress a key on a MIDI
// keyboard and then experiment with string coupling.
//
// The Tcl/Tk GUI allows you to experiment with various parameter
// settings and that can be used in conjunction with a MIDI keyboard
// as: wish < tcl/EGuitar.tcl | ./eguitar -or -ip -im 1
//
// For the moment, this program does not support pitch bends.
//
// Gary P. Scavone, McGill University 2012.
#include "Guitar.h"
#include "SKINImsg.h"
#include "WvOut.h"
#include "JCRev.h"
#include "Skini.h"
#include "RtAudio.h"
#include "Delay.h"
#include "Cubic.h"
// Miscellaneous command-line parsing and instrument allocation
// functions are defined in utilites.cpp ... specific to this program.
#include "utilities.h"
#include <signal.h>
#include <iostream>
#include <algorithm>
#include <cmath>
using std::min;
bool done;
static void finish(int ignore){ done = true; }
using namespace stk;
const unsigned int nStrings = 6;
// Data structure for string information.
struct StringInfo{
bool inUse; // is this string being used?
unsigned int iNote; // note number associated with this string
StringInfo() : inUse(false), iNote(0) {};
};
// The TickData structure holds all the class instances and data that
// are shared by the various processing functions.
struct TickData {
WvOut **wvout;
Guitar *guitar;
StringInfo voices[nStrings];
JCRev reverb;
Messager messager;
Skini::Message message;
StkFloat volume;
StkFloat t60;
unsigned int nWvOuts;
int channels;
int counter;
bool realtime;
bool settling;
bool haveMessage;
int keysDown;
StkFloat feedbackGain;
StkFloat oldFeedbackGain;
StkFloat distortionGain;
StkFloat distortionMix;
Delay feedbackDelay;
Cubic distortion;
StkFloat feedbackSample;
// Default constructor.
TickData()
: wvout(0), volume(1.0), t60(0.75),
nWvOuts(0), channels(2), counter(0),
realtime( false ), settling( false ), haveMessage( false ),
keysDown(0), feedbackSample( 0.0 ) {}
};
#define DELTA_CONTROL_TICKS 30 // default sample frames between control input checks
// The processMessage() function encapsulates the handling of control
// messages. It can be easily relocated within a program structure
// depending on the desired scheduling scheme.
void processMessage( TickData* data )
{
StkFloat value1 = data->message.floatValues[0];
StkFloat value2 = data->message.floatValues[1];
unsigned int channel = (unsigned int) data->message.channel;
switch( data->message.type ) {
case __SK_Exit_:
if ( data->settling == false ) goto settle;
done = true;
return;
case __SK_NoteOn_:
if ( value2 > 0.0 ) { // velocity > 0
unsigned int iNote = data->message.intValues[0];
if ( channel == 0 ) { // do basic voice management
unsigned int s;
if ( data->keysDown >= (int) nStrings ) break; // ignore extra note on's
// Find first unused string
for ( s=0; s<nStrings; s++ )
if ( !data->voices[s].inUse ) break;
if ( s == nStrings ) break;
data->voices[s].inUse = true;
data->voices[s].iNote = iNote;
data->guitar->noteOn( Midi2Pitch[iNote], value2 * ONE_OVER_128, s );
data->keysDown++;
// If first key down, turn on feedback gain
if ( data->keysDown == 1 )
data->feedbackGain = data->oldFeedbackGain;
}
else if ( channel <= nStrings )
data->guitar->noteOn( Midi2Pitch[iNote], value2 * ONE_OVER_128, channel-1 );
break;
}
// else a note off, so continue to next case
case __SK_NoteOff_:
if ( channel == 0 ) { // do basic voice management
if ( !data->keysDown ) break;
// Search for the released note
unsigned int s, iNote;
iNote = data->message.intValues[0];
for ( s=0; s<nStrings; s++ )
if ( data->voices[s].inUse && iNote == data->voices[s].iNote )
break;
if ( s == nStrings ) break;
data->voices[s].inUse = false;
data->guitar->noteOff( value2 * ONE_OVER_128, s );
data->keysDown--;
if ( data->keysDown == 0 ) { // turn off feedback gain and clear delay
data->feedbackDelay.clear();
data->feedbackGain = 0.0;
}
}
else if ( channel <= nStrings )
data->guitar->noteOff( value2 * ONE_OVER_128, channel-1 );
break;
case __SK_ControlChange_:
if ( value1 == 44.0 )
data->reverb.setEffectMix( value2 * ONE_OVER_128 );
else if ( value1 == 7.0 )
data->volume = value2 * ONE_OVER_128;
else if ( value1 == 27 ) // feedback delay
data->feedbackDelay.setDelay( (value2 * Stk::sampleRate() / 127) + 1 );
else if ( value1 == 28 ) { // feedback gain
//data->oldFeedbackGain = value2 * 0.01 / 127.0;
data->oldFeedbackGain = value2 * 0.02 / 127.0;
data->feedbackGain = data->oldFeedbackGain;
}
else if ( value1 == 71 ) // pre-distortion gain
data->distortionGain = 2.0 * value2 * ONE_OVER_128;
else if ( value1 == 72 ) // distortion mix
data->distortionMix = value2 * ONE_OVER_128;
else
data->guitar->controlChange( (int) value1, value2 );
break;
case __SK_AfterTouch_:
data->guitar->controlChange( 128, value1 );
break;
case __SK_PitchBend_:
// Implement me!
break;
case __SK_Volume_:
data->volume = value1 * ONE_OVER_128;
break;
} // end of switch
data->haveMessage = false;
return;
settle:
// Exit and program change messages are preceeded with a short settling period.
for ( unsigned int s=0; s<nStrings; s++ )
if ( data->voices[s].inUse ) data->guitar->noteOff( 0.6, s );
data->counter = (int) (0.3 * data->t60 * Stk::sampleRate());
data->settling = true;
}
// The tick() function handles sample computation and scheduling of
// control updates. If doing realtime audio output, it will be called
// automatically when the system needs a new buffer of audio samples.
int tick( void *outputBuffer, void *inputBuffer, unsigned int nBufferFrames,
double streamTime, RtAudioStreamStatus status, void *dataPointer )
{
TickData *data = (TickData *) dataPointer;
StkFloat temp, sample, *samples = (StkFloat *) outputBuffer;
int counter, nTicks = (int) nBufferFrames;
while ( nTicks > 0 && !done ) {
if ( !data->haveMessage ) {
data->messager.popMessage( data->message );
if ( data->message.type > 0 ) {
data->counter = (long) (data->message.time * Stk::sampleRate());
data->haveMessage = true;
}
else
data->counter = DELTA_CONTROL_TICKS;
}
counter = min( nTicks, data->counter );
data->counter -= counter;
for ( int i=0; i<counter; i++ ) {
// Put the previous distorted sample thru feedback
sample = data->feedbackDelay.tick( data->feedbackSample * data->feedbackGain );
sample = data->guitar->tick( sample );
// Apply distortion (x - x^3/3) and mix
temp = data->distortionGain * sample;
if ( temp > 0.6666667 ) temp = 0.6666667;
else if ( temp < -0.6666667 ) temp = -0.6666667;
else temp = data->distortion.tick( temp );
sample = (data->distortionMix * temp) + ((1 - data->distortionMix) * sample );
data->feedbackSample = sample;
// Tick instrument and apply reverb
sample = data->volume * data->reverb.tick( sample );
for ( unsigned int j=0; j<data->nWvOuts; j++ ) data->wvout[j]->tick( sample );
if ( data->realtime )
for ( int k=0; k<data->channels; k++ ) *samples++ = sample;
nTicks--;
}
if ( nTicks == 0 ) break;
// Process control messages.
if ( data->haveMessage ) processMessage( data );
}
return 0;
}
int main( int argc, char *argv[] )
{
TickData data;
int i;
#if defined(__STK_REALTIME__)
RtAudio *dac = 0;
#endif
// If you want to change the default sample rate (set in Stk.h), do
// it before instantiating any objects! If the sample rate is
// specified in the command line, it will override this setting.
Stk::setSampleRate( 44100.0 );
// By default, warning messages are not printed. If we want to see
// them, we need to specify that here.
Stk::showWarnings( true );
// Check the command-line arguments for errors and to determine
// the number of WvOut objects to be instantiated (in utilities.cpp).
data.nWvOuts = checkArgs( argc, argv );
data.wvout = (WvOut **) calloc( data.nWvOuts, sizeof(WvOut *) );
// Parse the command-line flags, instantiate WvOut objects, and
// instantiate the input message controller (in utilities.cpp).
try {
data.realtime = parseArgs( argc, argv, data.wvout, data.messager );
}
catch (StkError &) {
goto cleanup;
}
// If realtime output, allocate the dac here.
#if defined(__STK_REALTIME__)
if ( data.realtime ) {
dac = (RtAudio *) new RtAudio( RtAudio::UNSPECIFIED );
RtAudioFormat format = ( sizeof(StkFloat) == 8 ) ? RTAUDIO_FLOAT64 : RTAUDIO_FLOAT32;
RtAudio::StreamParameters parameters;
parameters.deviceId = dac->getDefaultOutputDevice();
parameters.nChannels = data.channels;
unsigned int bufferFrames = RT_BUFFER_SIZE;
if ( dac->openStream( &parameters, NULL, format, (unsigned int)Stk::sampleRate(), &bufferFrames, &tick, (void *)&data ) ) {
std::cout << dac->getErrorText() << std::endl;
goto cleanup;
}
}
#endif
// Set the reverb parameters.
data.reverb.setT60( data.t60 );
data.reverb.setEffectMix( 0.2 );
// Allocate guitar
data.guitar = new Guitar( nStrings );
// Configure distortion and feedback.
data.distortion.setThreshold( 2.0 / 3.0 );
data.distortion.setA1( 1.0 );
data.distortion.setA2( 0.0 );
data.distortion.setA3( -1.0 / 3.0 );
data.distortionMix = 0.9;
data.distortionGain = 1.0;
data.feedbackDelay.setMaximumDelay( (unsigned long int)( 1.1 * Stk::sampleRate() ) );
data.feedbackDelay.setDelay( 20000 );
data.feedbackGain = 0.001;
data.oldFeedbackGain = 0.001;
// Install an interrupt handler function.
(void) signal(SIGINT, finish);
// If realtime output, set our callback function and start the dac.
#if defined(__STK_REALTIME__)
if ( data.realtime ) {
if ( dac->startStream() ) {
std::cout << dac->getErrorText() << std::endl;
goto cleanup;
}
}
#endif
// Setup finished.
while ( !done ) {
#if defined(__STK_REALTIME__)
if ( data.realtime )
// Periodically check "done" status.
Stk::sleep( 200 );
else
#endif
// Call the "tick" function to process data.
tick( NULL, NULL, 256, 0, 0, (void *)&data );
}
// Shut down the output stream.
#if defined(__STK_REALTIME__)
if ( data.realtime )
dac->closeStream();
#endif
cleanup:
for ( i=0; i<(int)data.nWvOuts; i++ ) delete data.wvout[i];
free( data.wvout );
delete data.guitar;
delete dac;
std::cout << "\nStk eguitar finished ... goodbye.\n\n";
return 0;
}