/***************************************************/ /*! \class Mesh2D \brief Two-dimensional rectilinear waveguide mesh class. This class implements a rectilinear, two-dimensional digital waveguide mesh structure. For details, see Van Duyne and Smith, "Physical Modeling with the 2-D Digital Waveguide Mesh", Proceedings of the 1993 International Computer Music Conference. This is a digital waveguide model, making its use possibly subject to patents held by Stanford University, Yamaha, and others. Control Change Numbers: - X Dimension = 2 - Y Dimension = 4 - Mesh Decay = 11 - X-Y Input Position = 1 by Julius Smith, 2000 - 2002. Revised by Gary Scavone for STK, 2002. */ /***************************************************/ #ifndef STK_MESH2D_H #define STK_MESH2D_H #include "Instrmnt.h" #include "OnePole.h" const short NXMAX = 12; const short NYMAX = 12; class Mesh2D : public Instrmnt { public: //! Class constructor, taking the x and y dimensions in samples. Mesh2D(short nX, short nY); //! Class destructor. ~Mesh2D(); //! Reset and clear all internal state. void clear(); //! Set the x dimension size in samples. void setNX(short lenX); //! Set the y dimension size in samples. void setNY(short lenY); //! Set the x, y input position on a 0.0 - 1.0 scale. void setInputPosition(StkFloat xFactor, StkFloat yFactor); //! Set the loss filters gains (0.0 - 1.0). void setDecay(StkFloat decayFactor); //! Impulse the mesh with the given amplitude (frequency ignored). void noteOn(StkFloat frequency, StkFloat amplitude); //! Stop a note with the given amplitude (speed of decay) ... currently ignored. void noteOff(StkFloat amplitude); //! Calculate and return the signal energy stored in the mesh. StkFloat energy(); //! Input a sample to the mesh and compute one output sample. StkFloat inputTick( StkFloat input ); //! Perform the control change specified by \e number and \e value (0.0 - 128.0). void controlChange(int number, StkFloat value); protected: StkFloat computeSample( void ); StkFloat tick0(); StkFloat tick1(); void clearMesh(); short NX_, NY_; short xInput_, yInput_; OnePole filterX_[NXMAX]; OnePole filterY_[NYMAX]; StkFloat v_[NXMAX-1][NYMAX-1]; // junction velocities StkFloat vxp_[NXMAX][NYMAX]; // positive-x velocity wave StkFloat vxm_[NXMAX][NYMAX]; // negative-x velocity wave StkFloat vyp_[NXMAX][NYMAX]; // positive-y velocity wave StkFloat vym_[NXMAX][NYMAX]; // negative-y velocity wave // Alternate buffers StkFloat vxp1_[NXMAX][NYMAX]; // positive-x velocity wave StkFloat vxm1_[NXMAX][NYMAX]; // negative-x velocity wave StkFloat vyp1_[NXMAX][NYMAX]; // positive-y velocity wave StkFloat vym1_[NXMAX][NYMAX]; // negative-y velocity wave int counter_; // time in samples }; #endif