mirror of
https://github.com/thestk/stk
synced 2026-01-17 14:41:53 +00:00
Version 4.4.4
This commit is contained in:
committed by
Stephen Sinclair
parent
0aec39260a
commit
fc877b87bf
381
projects/eguitar/eguitar.cpp
Normal file
381
projects/eguitar/eguitar.cpp
Normal file
@@ -0,0 +1,381 @@
|
||||
// Eguitar.cpp
|
||||
//
|
||||
// This is a program to create a simple electric guitar model using
|
||||
// the STK Guitar class. The is model is derived in part from an
|
||||
// implementation made by Nicholas Donaldson at McGill University in
|
||||
// 2009. The distortion model is poor, using a simple soft-clipping
|
||||
// expression provided by Charles R. Sullivan in "Extending the
|
||||
// Karplus-String Algorithm to Synthesize Electric Guitar Timbres with
|
||||
// Distortion and Feedback," Computer Music Journal, Vol.14 No.3, Fall
|
||||
// 1990. Other distortion models would be better, such as that found
|
||||
// in Pakarinen and Yeh's "A Review of Digital Techniques for Modeling
|
||||
// Vacuum-Tube Guitar Amplifiers," Computer Music Journal, Vol 33
|
||||
// No. 2, Summer 2009.
|
||||
//
|
||||
// This program performs simple voice management if all noteOn and
|
||||
// noteOff events are on channel 0. Otherwise, channel values > 0 are
|
||||
// mapped to specific string numbers. By default, the program creates
|
||||
// a 6-string guitar. If the normalized noteOn() velocity is < 0.2, a
|
||||
// string is undamped but not plucked (this is implemented in the
|
||||
// stk::Guitar class). Thus, you can lightly depress a key on a MIDI
|
||||
// keyboard and then experiment with string coupling.
|
||||
//
|
||||
// The Tcl/Tk GUI allows you to experiment with various parameter
|
||||
// settings and that can be used in conjunction with a MIDI keyboard
|
||||
// as: wish < tcl/EGuitar.tcl | ./eguitar -or -ip -im 1
|
||||
//
|
||||
// For the moment, this program does not support pitch bends.
|
||||
//
|
||||
// Gary P. Scavone, McGill University 2012.
|
||||
|
||||
#include "Guitar.h"
|
||||
#include "SKINI.msg"
|
||||
#include "WvOut.h"
|
||||
#include "JCRev.h"
|
||||
#include "Skini.h"
|
||||
#include "RtAudio.h"
|
||||
#include "Delay.h"
|
||||
#include "Cubic.h"
|
||||
|
||||
// Miscellaneous command-line parsing and instrument allocation
|
||||
// functions are defined in utilites.cpp ... specific to this program.
|
||||
#include "utilities.h"
|
||||
|
||||
#include <signal.h>
|
||||
#include <iostream>
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
using std::min;
|
||||
|
||||
bool done;
|
||||
static void finish(int ignore){ done = true; }
|
||||
|
||||
using namespace stk;
|
||||
|
||||
const unsigned int nStrings = 6;
|
||||
|
||||
// Data structure for string information.
|
||||
struct StringInfo{
|
||||
bool inUse; // is this string being used?
|
||||
unsigned int iNote; // note number associated with this string
|
||||
|
||||
StringInfo() : inUse(false), iNote(0) {};
|
||||
};
|
||||
|
||||
// The TickData structure holds all the class instances and data that
|
||||
// are shared by the various processing functions.
|
||||
struct TickData {
|
||||
WvOut **wvout;
|
||||
Guitar *guitar;
|
||||
StringInfo voices[nStrings];
|
||||
JCRev reverb;
|
||||
Messager messager;
|
||||
Skini::Message message;
|
||||
StkFloat volume;
|
||||
StkFloat t60;
|
||||
unsigned int nWvOuts;
|
||||
int channels;
|
||||
int counter;
|
||||
bool realtime;
|
||||
bool settling;
|
||||
bool haveMessage;
|
||||
int keysDown;
|
||||
|
||||
StkFloat feedbackGain;
|
||||
StkFloat oldFeedbackGain;
|
||||
StkFloat distortionGain;
|
||||
StkFloat distortionMix;
|
||||
Delay feedbackDelay;
|
||||
Cubic distortion;
|
||||
StkFloat feedbackSample;
|
||||
|
||||
// Default constructor.
|
||||
TickData()
|
||||
: wvout(0), volume(1.0), t60(0.75),
|
||||
nWvOuts(0), channels(2), counter(0),
|
||||
realtime( false ), settling( false ), haveMessage( false ),
|
||||
keysDown(0), feedbackSample( 0.0 ) {}
|
||||
};
|
||||
|
||||
#define DELTA_CONTROL_TICKS 30 // default sample frames between control input checks
|
||||
|
||||
// The processMessage() function encapsulates the handling of control
|
||||
// messages. It can be easily relocated within a program structure
|
||||
// depending on the desired scheduling scheme.
|
||||
void processMessage( TickData* data )
|
||||
{
|
||||
register StkFloat value1 = data->message.floatValues[0];
|
||||
register StkFloat value2 = data->message.floatValues[1];
|
||||
unsigned int channel = (unsigned int) data->message.channel;
|
||||
|
||||
switch( data->message.type ) {
|
||||
|
||||
case __SK_Exit_:
|
||||
if ( data->settling == false ) goto settle;
|
||||
done = true;
|
||||
return;
|
||||
|
||||
case __SK_NoteOn_:
|
||||
if ( value2 > 0.0 ) { // velocity > 0
|
||||
unsigned int iNote = data->message.intValues[0];
|
||||
if ( channel == 0 ) { // do basic voice management
|
||||
unsigned int s;
|
||||
if ( data->keysDown >= (int) nStrings ) break; // ignore extra note on's
|
||||
// Find first unused string
|
||||
for ( s=0; s<nStrings; s++ )
|
||||
if ( !data->voices[s].inUse ) break;
|
||||
if ( s == nStrings ) break;
|
||||
data->voices[s].inUse = true;
|
||||
data->voices[s].iNote = iNote;
|
||||
data->guitar->noteOn( Midi2Pitch[iNote], value2 * ONE_OVER_128, s );
|
||||
data->keysDown++;
|
||||
// If first key down, turn on feedback gain
|
||||
if ( data->keysDown == 1 )
|
||||
data->feedbackGain = data->oldFeedbackGain;
|
||||
}
|
||||
else if ( channel <= nStrings )
|
||||
data->guitar->noteOn( Midi2Pitch[iNote], value2 * ONE_OVER_128, channel-1 );
|
||||
break;
|
||||
}
|
||||
// else a note off, so continue to next case
|
||||
|
||||
case __SK_NoteOff_:
|
||||
if ( channel == 0 ) { // do basic voice management
|
||||
if ( !data->keysDown ) break;
|
||||
// Search for the released note
|
||||
unsigned int s, iNote;
|
||||
iNote = data->message.intValues[0];
|
||||
for ( s=0; s<nStrings; s++ )
|
||||
if ( data->voices[s].inUse && iNote == data->voices[s].iNote )
|
||||
break;
|
||||
if ( s == nStrings ) break;
|
||||
data->voices[s].inUse = false;
|
||||
data->guitar->noteOff( value2 * ONE_OVER_128, s );
|
||||
data->keysDown--;
|
||||
if ( data->keysDown == 0 ) { // turn off feedback gain and clear delay
|
||||
data->feedbackDelay.clear();
|
||||
data->feedbackGain = 0.0;
|
||||
}
|
||||
}
|
||||
else if ( channel <= nStrings )
|
||||
data->guitar->noteOff( value2 * ONE_OVER_128, channel-1 );
|
||||
break;
|
||||
|
||||
case __SK_ControlChange_:
|
||||
if ( value1 == 44.0 )
|
||||
data->reverb.setEffectMix( value2 * ONE_OVER_128 );
|
||||
else if ( value1 == 7.0 )
|
||||
data->volume = value2 * ONE_OVER_128;
|
||||
else if ( value1 == 27 ) // feedback delay
|
||||
data->feedbackDelay.setDelay( (value2 * Stk::sampleRate() / 127) + 1 );
|
||||
else if ( value1 == 28 ) { // feedback gain
|
||||
//data->oldFeedbackGain = value2 * 0.01 / 127.0;
|
||||
data->oldFeedbackGain = value2 * 0.02 / 127.0;
|
||||
data->feedbackGain = data->oldFeedbackGain;
|
||||
}
|
||||
else if ( value1 == 71 ) // pre-distortion gain
|
||||
data->distortionGain = 2.0 * value2 * ONE_OVER_128;
|
||||
else if ( value1 == 72 ) // distortion mix
|
||||
data->distortionMix = value2 * ONE_OVER_128;
|
||||
else
|
||||
data->guitar->controlChange( (int) value1, value2 );
|
||||
break;
|
||||
case __SK_AfterTouch_:
|
||||
data->guitar->controlChange( 128, value1 );
|
||||
break;
|
||||
|
||||
case __SK_PitchBend_:
|
||||
// Implement me!
|
||||
break;
|
||||
case __SK_Volume_:
|
||||
data->volume = value1 * ONE_OVER_128;
|
||||
break;
|
||||
|
||||
} // end of switch
|
||||
|
||||
data->haveMessage = false;
|
||||
return;
|
||||
|
||||
settle:
|
||||
// Exit and program change messages are preceeded with a short settling period.
|
||||
for ( unsigned int s=0; s<nStrings; s++ )
|
||||
if ( data->voices[s].inUse ) data->guitar->noteOff( 0.6, s );
|
||||
data->counter = (int) (0.3 * data->t60 * Stk::sampleRate());
|
||||
data->settling = true;
|
||||
}
|
||||
|
||||
|
||||
// The tick() function handles sample computation and scheduling of
|
||||
// control updates. If doing realtime audio output, it will be called
|
||||
// automatically when the system needs a new buffer of audio samples.
|
||||
int tick( void *outputBuffer, void *inputBuffer, unsigned int nBufferFrames,
|
||||
double streamTime, RtAudioStreamStatus status, void *dataPointer )
|
||||
{
|
||||
TickData *data = (TickData *) dataPointer;
|
||||
register StkFloat temp, sample, *samples = (StkFloat *) outputBuffer;
|
||||
int counter, nTicks = (int) nBufferFrames;
|
||||
|
||||
while ( nTicks > 0 && !done ) {
|
||||
|
||||
if ( !data->haveMessage ) {
|
||||
data->messager.popMessage( data->message );
|
||||
if ( data->message.type > 0 ) {
|
||||
data->counter = (long) (data->message.time * Stk::sampleRate());
|
||||
data->haveMessage = true;
|
||||
}
|
||||
else
|
||||
data->counter = DELTA_CONTROL_TICKS;
|
||||
}
|
||||
|
||||
counter = min( nTicks, data->counter );
|
||||
data->counter -= counter;
|
||||
for ( int i=0; i<counter; i++ ) {
|
||||
|
||||
// Put the previous distorted sample thru feedback
|
||||
sample = data->feedbackDelay.tick( data->feedbackSample * data->feedbackGain );
|
||||
sample = data->guitar->tick( sample );
|
||||
|
||||
// Apply distortion (x - x^3/3) and mix
|
||||
temp = data->distortionGain * sample;
|
||||
if ( temp > 0.6666667 ) temp = 0.6666667;
|
||||
else if ( temp < -0.6666667 ) temp = -0.6666667;
|
||||
else temp = data->distortion.tick( temp );
|
||||
sample = (data->distortionMix * temp) + ((1 - data->distortionMix) * sample );
|
||||
data->feedbackSample = sample;
|
||||
|
||||
// Tick instrument and apply reverb
|
||||
sample = data->volume * data->reverb.tick( sample );
|
||||
for ( unsigned int j=0; j<data->nWvOuts; j++ ) data->wvout[j]->tick( sample );
|
||||
if ( data->realtime )
|
||||
for ( int k=0; k<data->channels; k++ ) *samples++ = sample;
|
||||
nTicks--;
|
||||
}
|
||||
if ( nTicks == 0 ) break;
|
||||
|
||||
// Process control messages.
|
||||
if ( data->haveMessage ) processMessage( data );
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int main( int argc, char *argv[] )
|
||||
{
|
||||
TickData data;
|
||||
int i;
|
||||
|
||||
#if defined(__STK_REALTIME__)
|
||||
RtAudio dac;
|
||||
#endif
|
||||
|
||||
// If you want to change the default sample rate (set in Stk.h), do
|
||||
// it before instantiating any objects! If the sample rate is
|
||||
// specified in the command line, it will override this setting.
|
||||
Stk::setSampleRate( 44100.0 );
|
||||
|
||||
// By default, warning messages are not printed. If we want to see
|
||||
// them, we need to specify that here.
|
||||
Stk::showWarnings( true );
|
||||
|
||||
// Check the command-line arguments for errors and to determine
|
||||
// the number of WvOut objects to be instantiated (in utilities.cpp).
|
||||
data.nWvOuts = checkArgs( argc, argv );
|
||||
data.wvout = (WvOut **) calloc( data.nWvOuts, sizeof(WvOut *) );
|
||||
|
||||
// Parse the command-line flags, instantiate WvOut objects, and
|
||||
// instantiate the input message controller (in utilities.cpp).
|
||||
try {
|
||||
data.realtime = parseArgs( argc, argv, data.wvout, data.messager );
|
||||
}
|
||||
catch (StkError &) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
// If realtime output, allocate the dac here.
|
||||
#if defined(__STK_REALTIME__)
|
||||
if ( data.realtime ) {
|
||||
RtAudioFormat format = ( sizeof(StkFloat) == 8 ) ? RTAUDIO_FLOAT64 : RTAUDIO_FLOAT32;
|
||||
RtAudio::StreamParameters parameters;
|
||||
parameters.deviceId = dac.getDefaultOutputDevice();
|
||||
parameters.nChannels = data.channels;
|
||||
unsigned int bufferFrames = RT_BUFFER_SIZE;
|
||||
try {
|
||||
dac.openStream( ¶meters, NULL, format, (unsigned int)Stk::sampleRate(), &bufferFrames, &tick, (void *)&data );
|
||||
}
|
||||
catch ( RtError& error ) {
|
||||
error.printMessage();
|
||||
goto cleanup;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// Set the reverb parameters.
|
||||
data.reverb.setT60( data.t60 );
|
||||
data.reverb.setEffectMix( 0.2 );
|
||||
|
||||
// Allocate guitar
|
||||
data.guitar = new Guitar( nStrings );
|
||||
|
||||
// Configure distortion and feedback.
|
||||
data.distortion.setThreshold( 2.0 / 3.0 );
|
||||
data.distortion.setA1( 1.0 );
|
||||
data.distortion.setA2( 0.0 );
|
||||
data.distortion.setA3( -1.0 / 3.0 );
|
||||
data.distortionMix = 0.9;
|
||||
data.distortionGain = 1.0;
|
||||
data.feedbackDelay.setMaximumDelay( (unsigned long int)( 1.1 * Stk::sampleRate() ) );
|
||||
data.feedbackDelay.setDelay( 20000 );
|
||||
data.feedbackGain = 0.001;
|
||||
data.oldFeedbackGain = 0.001;
|
||||
|
||||
|
||||
// Install an interrupt handler function.
|
||||
(void) signal(SIGINT, finish);
|
||||
|
||||
// If realtime output, set our callback function and start the dac.
|
||||
#if defined(__STK_REALTIME__)
|
||||
if ( data.realtime ) {
|
||||
try {
|
||||
dac.startStream();
|
||||
}
|
||||
catch ( RtError &error ) {
|
||||
error.printMessage();
|
||||
goto cleanup;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// Setup finished.
|
||||
while ( !done ) {
|
||||
#if defined(__STK_REALTIME__)
|
||||
if ( data.realtime )
|
||||
// Periodically check "done" status.
|
||||
Stk::sleep( 200 );
|
||||
else
|
||||
#endif
|
||||
// Call the "tick" function to process data.
|
||||
tick( NULL, NULL, 256, 0, 0, (void *)&data );
|
||||
}
|
||||
|
||||
// Shut down the output stream.
|
||||
#if defined(__STK_REALTIME__)
|
||||
if ( data.realtime ) {
|
||||
try {
|
||||
dac.closeStream();
|
||||
}
|
||||
catch ( RtError& error ) {
|
||||
error.printMessage();
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
cleanup:
|
||||
|
||||
for ( i=0; i<(int)data.nWvOuts; i++ ) delete data.wvout[i];
|
||||
free( data.wvout );
|
||||
delete data.guitar;
|
||||
|
||||
std::cout << "\nStk eguitar finished ... goodbye.\n\n";
|
||||
return 0;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user