Version 4.4.0

This commit is contained in:
Gary Scavone
2013-09-29 23:11:39 +02:00
committed by Stephen Sinclair
parent d199342e86
commit eccd8c9981
287 changed files with 11712 additions and 7676 deletions

View File

@@ -1,6 +1,6 @@
/*! \page instruments Instruments
The ToolKit comes with a wide variety of synthesis algorithms, all of which inherit from the Instrmnt class. In this example, we'll fire up an instance of the BeeThree FM synthesis class and show how its frequency can be modified over time.
The ToolKit comes with a wide variety of synthesis algorithms, all of which inherit from the stk::Instrmnt class. In this example, we'll fire up an instance of the stk::BeeThree FM synthesis class and show how its frequency can be modified over time.
\include bethree.cpp
@@ -10,7 +10,7 @@ with any other STK instrument class. It should be noted, however,
that a few classes do not respond to the setFrequency() function
(e.g., Shakers, Drummer).
The noteOn() function initiates an instrument attack. Instruments that are continuously excited (e.g., Clarinet, BeeThree) will continue to sound until stopped with a noteOff(). Impulsively excited instrument sounds (e.g., Plucked, Wurley) typically decay within a few seconds time, requiring subsequent noteOn() messages for re-attack.
The noteOn() function initiates an instrument attack. Instruments that are continuously excited (e.g., stk::Clarinet, stk::BeeThree) will continue to sound until stopped with a noteOff(). Impulsively excited instrument sounds (e.g., stk::Plucked, stk::Wurley) typically decay within a few seconds time, requiring subsequent noteOn() messages for re-attack.
Instrument parameters can be precisely controlled as demonstrated above. A more flexible approach to instrument control, allowing arbitrary scorefile or realtime updates, is described in the next tutorial chapter.