Added new Recorder class, fixed bug in StifKarp.

This commit is contained in:
Gary Scavone
2019-04-16 11:04:41 -04:00
parent 8de7543266
commit ae2bac1601
10 changed files with 736 additions and 184 deletions

View File

@@ -47,8 +47,8 @@ Flute :: Flute( StkFloat lowestFrequency )
adsr_.setAllTimes( 0.005, 0.01, 0.8, 0.010 );
endReflection_ = 0.5;
jetReflection_ = 0.5;
noiseGain_ = 0.15; // Breath pressure random component.
vibratoGain_ = 0.05; // Breath periodic vibrato component.
noiseGain_ = 0.15; // Breath pressure random component
vibratoGain_ = 0.05; // Breath periodic vibrato component
jetRatio_ = 0.32;
maxPressure_ = 0.0;

View File

@@ -26,7 +26,7 @@ OBJECTS = Stk.o Generator.o Noise.o Blit.o BlitSaw.o BlitSquare.o Granulate.o \
Function.o ReedTable.o JetTable.o BowTable.o Cubic.o \
Voicer.o Vector3D.o Sphere.o Twang.o Guitar.o \
\
Instrmnt.o Clarinet.o BlowHole.o Saxofony.o Flute.o Brass.o BlowBotl.o \
Instrmnt.o Clarinet.o BlowHole.o Saxofony.o Flute.o Recorder.o Brass.o BlowBotl.o \
Bowed.o Plucked.o StifKarp.o Sitar.o Mandolin.o Mesh2D.o \
FM.o Rhodey.o Wurley.o TubeBell.o HevyMetl.o PercFlut.o BeeThree.o FMVoices.o \
Sampler.o Moog.o Simple.o Drummer.o Shakers.o \

345
src/Recorder.cpp Normal file
View File

@@ -0,0 +1,345 @@
/***************************************************/
/*! \class Recorder
\brief A recorder / flute physical model.
This class implements a physical model of a recorder /
flute instrument, based on the paper "Sound production
in recorderlike instruments. II. A simulation model."
by M.P. Verge, A. Hirschberg and R. Causse, Journal of
the Acoustical Society of America, 1997.
Control Change Numbers:
- Softness = 2
- Noise Gain = 4
- Noise Cutoff = 16
- Vibrato Frequency = 11
- Vibrato Gain = 1
- Breath Pressure = 128
by Mathias Bredholt, McGill University.
Formatted for STK by Gary Scavone, 2019.
*/
/***************************************************/
#include "Recorder.h"
#include "SKINImsg.h"
namespace stk {
// Air constants
const stk::StkFloat rho = 1.2041; // density of air
const stk::StkFloat c0 = 343.21; // speed of sound in air
// Flute constants
const stk::StkFloat lc = 0.02; // length of flue canal
const stk::StkFloat h = 0.001; // height of flue exit
const stk::StkFloat H = 0.02; // pipe diameter
const stk::StkFloat W = 4 * h; // width of mouth
const stk::StkFloat Sp = H * H; // cross-section of pipe
const stk::StkFloat Sm = W * H; // cross-section of mouth
const stk::StkFloat din = 0.0030; // end correction
const stk::StkFloat dout = 0.0063; // end correction
const stk::StkFloat dm = din + dout; // end correction of mouth
const stk::StkFloat dd = 0.0035; // acoustic distance between Q1 and Q2
const stk::StkFloat rp = sqrt(Sp / stk::PI);
const stk::StkFloat b = 0.4 * h; // jet width
// Calculation coefficients
const stk::StkFloat b2 = Sp / (rho * c0);
Recorder :: Recorder()
{
vibratoGain_ = 0.0;
noiseGain_ = 0.2;
breathCutoff_ = 0.0;
outputGain_ = 0.0;
psi_ = 1.0;
poutL_ = 0;
pout_ = 0;
poutm1_ = 0;
poutm2_ = 0;
pin_ = 0;
pinm1_ = 0;
pinm2_ = 0;
Uj_ = 0;
Ujm1_ = 0;
Qj_ = 0;
Qjm1_ = 0;
Qjm2_ = 0;
Q1_ = 0;
Q1m1_ = 0;
Q1m2_ = 0;
Qp_ = 0;
Qpm1_ = 0;
pm_ = 0;
pinDelay_.tick( 0 );
poutDelay_.tick( 0 );
jetDelay_.tick( 0 );
jetDelay_.setDelay(200);
vibrato_.setFrequency(4);
// Calculation coefficients ... would need to be recalculated if sample rate changes
StkFloat T = 1.0 / Stk::sampleRate();
b1 = rho / (4.0 * PI * c0 * T * T);
b3 = dm * Sp / (T * Sm * c0);
b4 = rho * dout / (Sm * T);
// Radiation loss filter
StkFloat A = rp * rp / (4 * c0 * c0 * T * T);
StkFloat B = 0.82 * rp / (c0*T);
StkFloat b_rad[3] = { 1 + A - B, B - 2 * A, A };
StkFloat a_rad[3] = { A - B - 1, B - 2 * A, A };
std::vector<StkFloat> b_coeffs( &b_rad[0], &b_rad[0]+3 );
std::vector<StkFloat> a_coeffs( &a_rad[0], &a_rad[0]+3 );
radiation_filter_.setCoefficients(b_coeffs, a_coeffs);
// Visco-thermal loss filter
StkFloat b_visco[4] = { 0.83820223947141, -0.16888603248373, -0.64759781930259, 0.07424498608506 };
StkFloat a_visco[4] = { 1.0, -0.33623476246554, -0.71257915055968, 0.14508304017256 };
b_coeffs.clear();
b_coeffs.assign( &b_visco[0], &b_visco[0]+4 );
a_coeffs.clear();
a_coeffs.assign( &a_visco[0], &a_visco[0]+4 );
visco_in_filter_.setCoefficients(b_coeffs, a_coeffs);
visco_out_filter_.setCoefficients(b_coeffs, a_coeffs);
setBreathCutoff( 500 );
setFrequency( 880 );
}
Recorder :: ~Recorder( void )
{
}
void Recorder :: clear( void )
{
pinDelay_.clear();
poutDelay_.clear();
jetDelay_.clear();
radiation_filter_.clear();
visco_in_filter_.clear();
visco_out_filter_.clear();
turbFilter_.clear();
}
void Recorder :: setFrequency( StkFloat val )
{
#if defined(_STK_DEBUG_)
if ( val <= 0.0 ) {
oStream_ << "Recorder::setFrequency: argument is less than or equal to zero!";
handleError( StkError::WARNING ); return;
}
#endif
StkFloat M = Stk::sampleRate() / val - 4 - 3;
pinDelay_.setDelay( M );
poutDelay_.setDelay( M );
}
void Recorder :: setBlowPressure( StkFloat val )
{
maxPressure_ = val;
}
void Recorder :: setVibratoGain( StkFloat val )
{
vibratoGain_ = val;
}
void Recorder :: setVibratoFrequency( StkFloat val )
{
vibrato_.setFrequency( val );
}
void Recorder :: setNoiseGain( StkFloat val )
{
noiseGain_ = val;
}
void Recorder :: setBreathCutoff( StkFloat val )
{
// The gain of this filter is quite high
breathCutoff_ = val;
StkFloat Q = 0.99;
StkFloat r = 2.0 * sin(PI * val / sampleRate());
StkFloat q = 1.0 - r * Q;
StkFloat as[3] = { 1.0, r * r - q - 1, q };
std::vector<StkFloat> b_turb(1, r*r);
std::vector<StkFloat> a_turb( &as[0], &as[0]+3 );
turbFilter_.setCoefficients(b_turb, a_turb);
}
void Recorder :: setSoftness( StkFloat val )
{
psi_ = val;
}
void Recorder :: startBlowing( StkFloat amplitude, StkFloat rate )
{
if ( amplitude <= 0.0 || rate <= 0.0 ) {
oStream_ << "Recorder::startBlowing: one or more arguments is less than or equal to zero!";
handleError( StkError::WARNING ); return;
}
adsr_.setAttackRate( rate );
//maxPressure_ = amplitude / (StkFloat) 0.8;
maxPressure_ = 35 * amplitude;
adsr_.keyOn();
}
void Recorder :: stopBlowing( StkFloat rate )
{
if ( rate <= 0.0 ) {
oStream_ << "Recorder::stopBlowing: argument is less than or equal to zero!";
handleError( StkError::WARNING ); return;
}
adsr_.setReleaseRate( rate );
adsr_.keyOff();
}
void Recorder :: noteOn( StkFloat frequency, StkFloat amplitude )
{
this->setFrequency( frequency );
this->startBlowing( 1.1 + (amplitude * 0.20), amplitude * 0.02 );
outputGain_ = amplitude / 40.0;
}
void Recorder :: noteOff( StkFloat amplitude )
{
this->stopBlowing( amplitude * 0.02 );
}
void Recorder :: controlChange( int number, StkFloat value )
{
#if defined(_STK_DEBUG_)
if ( Stk::inRange( value, 0.0, 128.0 ) == false ) {
oStream_ << "Recorder::controlChange: value (" << value << ") is out of range!";
handleError( StkError::WARNING ); return;
}
#endif
StkFloat normalizedValue = value * ONE_OVER_128;
if (number == 2) // 2
psi_ = 2.0 * normalizedValue;
else if (number == 16)
setBreathCutoff( normalizedValue * 2000 );
else if (number == __SK_NoiseLevel_) // 4
noiseGain_ = normalizedValue;
else if (number == __SK_ModFrequency_) // 11
vibrato_.setFrequency( normalizedValue * 12.0);
else if (number == __SK_ModWheel_) // 1
vibratoGain_ = ( normalizedValue * 0.4 );
else if (number == __SK_AfterTouch_Cont_) // 128
maxPressure_ = 35.0 * normalizedValue;
#if defined(_STK_DEBUG_)
else {
oStream_ << "Recorder::controlChange: undefined control number (" << number << ")!";
handleError( StkError::WARNING );
}
#endif
}
StkFloat Recorder::tick( unsigned int )
{
// Read in from delay lines
pinm2_ = pinm1_;
pinm1_ = pin_;
pin_ = pinDelay_.lastOut();
poutm2_ = poutm1_;
poutm1_ = pout_;
poutL_ = poutDelay_.lastOut();
// Filter wave components for visco-thermal losses
pin_ = visco_in_filter_.tick(pin_);
poutL_ = visco_out_filter_.tick(poutL_);
// Get input blow pressure
StkFloat pf = maxPressure_ * adsr_.tick() * (vibrato_.tick() * vibratoGain_ + (1 - vibratoGain_));
StkFloat T = 1.0 / sampleRate();
// Jet velocity at flue exit
Ujm1_ = Uj_;
Uj_ = Ujm1_ + T / (rho * lc) * (pf - pm_ - 0.5 * rho * Ujm1_ * Ujm1_);
// Jet flow at flue exit
Qjm2_ = Qjm1_;
Qjm1_ = Qj_;
Qj_ = h * H * Uj_;
// Jet drive
StkFloat Uj_steady = fmax(sqrt(2 * pf / rho), 0.1);
StkFloat fc_jet = 0.36 / W * Uj_steady;
StkFloat g_jet = 0.002004 * exp(-0.06046 * Uj_steady);
StkFloat r_jet = 0.95 - Uj_steady * 0.015;
StkFloat b0_jet = g_jet * (1 - r_jet * r_jet) / 2;
// Calculate coefficients for resonant filter
StkFloat b_jet[3] = { b0_jet, 0, -b0_jet };
StkFloat a_jet[3] = { 1, -2 * r_jet * cos(2 * PI * fc_jet * T), r_jet * r_jet };
std::vector<StkFloat> b_jetcoeffs( &b_jet[0], &b_jet[0]+3 );
std::vector<StkFloat> a_jetcoeffs( &a_jet[0], &a_jet[0]+3 );
jetFilter_.setCoefficients( b_jetcoeffs, a_jetcoeffs );
StkFloat eta = jetFilter_.tick(jetDelay_.lastOut());
// Calculate flow source Q1
Q1m1_ = Q1_;
Q1_ = b * H * Uj_ * (1 + tanh(eta / (psi_ * b)));
// Calculate pressure pulse modeling the jet drive
StkFloat pjd = -rho * dd / Sm * (Q1_ - Q1m1_) / T;
// Vortex shedding
int Qp_sign = 0;
if (Qp_ < 0) Qp_sign = -1;
else if (Qp_ > 0) Qp_sign = 1;
StkFloat pa = -0.5 * rho * (Qp_ / (0.6 * Sm)) * (Qp_ / (0.6 * Sm)) * Qp_sign;
// Turbulence
StkFloat pt = turbFilter_.tick(noiseGain_ * turb_.tick() * 0.5 * rho * Uj_ * Uj_);
// Pressure pulse delta p
StkFloat dp = pjd + pa + pt;
// Calculate outgoing pressure pout
pout_ = ((b3 - b1 * b2 - 1) * pin_ +
(2 * b1 * b2 - b3) * (pinm1_ - poutm1_) +
b1 * b2 * (poutm2_ - pinm2_) -
b1 * (Qj_ - 2 * Qjm1_ + Qjm2_) +
b4 * (Qj_ - Qjm1_) + dp) / (1 - b1 * b2 + b3);
// Flow in the pipe
Qpm1_ = Qp_;
Qp_ = Sp / (rho * c0) * (pout_ - pin_);
// Mouth pressure
pm_ = pout_ + pin_ - dp + rho * din / Sm * (Qp_ - Qpm1_)/T;
// Calculate transverse acoustic velocity
StkFloat Q1d = Q1_ - 0.5 * b * H * Uj_;
StkFloat Vac = 2.0 / PI * Qp_ / Sm - 0.38 * Q1d / Sm;
jetDelay_.tick(Vac);
// Calculate new jet delay line length
//jet_.setDelay(fmin(W / (0.6 * Uj_steady) * sampleRate(), 200.0));
jetDelay_.setDelay(fmin(W / (0.6 * Uj_steady * T), 200.0));
// Radiation loss filtering
StkFloat pin_L = radiation_filter_.tick(poutL_);
// Write to delay lines
poutDelay_.tick(pout_);
pinDelay_.tick(pin_L);
lastFrame_[0] = outputGain_ * (pout_ + pin_);
return lastFrame_[0];
//return (pout_0 + pin_0) * 0.01;
}
} // stk namespace

View File

@@ -89,7 +89,7 @@ void StifKarp :: setStretch( StkFloat stretch )
StkFloat freq = lastFrequency_ * 2.0;
StkFloat dFreq = ( (0.5 * Stk::sampleRate()) - freq ) * 0.25;
StkFloat temp = 0.5 + (stretch * 0.5);
if ( temp > 0.9999 ) temp = 0.9999;
if ( temp > 0.99999 ) temp = 0.99999;
for ( int i=0; i<4; i++ ) {
coefficient = temp * temp;
biquad_[i].setA2( coefficient );
@@ -131,7 +131,7 @@ void StifKarp :: pluck( StkFloat amplitude )
}
pluckAmplitude_ = amplitude;
for ( unsigned long i=0; i<length_; i++ ) {
for ( unsigned long i=0; i<lastLength_; i++ ) {
// Fill delay with noise additively with current contents.
delayLine_.tick( (delayLine_.lastOut() * 0.6) + 0.4 * noise_.tick() * pluckAmplitude_ );
//delayLine_.tick( combDelay_.tick((delayLine_.lastOut() * 0.6) + 0.4 * noise->tick() * pluckAmplitude_) );