Version 4.2.0

This commit is contained in:
Gary Scavone
2009-03-24 23:02:14 -04:00
committed by Stephen Sinclair
parent cf06b7598b
commit a6381b9d38
281 changed files with 17152 additions and 12000 deletions

View File

@@ -29,7 +29,7 @@
- Register State = 1
- Breath Pressure = 128
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
by Perry R. Cook and Gary P. Scavone, 1995 - 2004.
*/
/***************************************************/
@@ -37,221 +37,232 @@
#include "SKINI.msg"
#include <math.h>
BlowHole :: BlowHole(MY_FLOAT lowestFrequency)
BlowHole :: BlowHole(StkFloat lowestFrequency)
{
length = (long) (Stk::sampleRate() / lowestFrequency + 1);
length_ = (unsigned long) (Stk::sampleRate() / lowestFrequency + 1);
// delays[0] is the delay line between the reed and the register vent.
delays[0] = (DelayL *) new DelayL( 5.0 * Stk::sampleRate() / 22050.0, 100 );
delays_[0].setDelay( 5.0 * Stk::sampleRate() / 22050.0 );
// delays[1] is the delay line between the register vent and the tonehole.
delays[1] = (DelayL *) new DelayL( length >> 1, length );
delays_[1].setMaximumDelay( length_ );
delays_[1].setDelay( length_ >> 1 );
// delays[2] is the delay line between the tonehole and the end of the bore.
delays[2] = (DelayL *) new DelayL( 4.0 * Stk::sampleRate() / 22050.0, 100 );
reedTable = new ReedTabl();
reedTable->setOffset((MY_FLOAT) 0.7);
reedTable->setSlope((MY_FLOAT) -0.3);
filter = new OneZero;
envelope = new Envelope;
noise = new Noise;
delays_[2].setDelay( 4.0 * Stk::sampleRate() / 22050.0 );
reedTable_.setOffset( 0.7 );
reedTable_.setSlope( -0.3 );
// Calculate the initial tonehole three-port scattering coefficient
double r_b = 0.0075; // main bore radius
r_th = 0.003; // tonehole radius
scatter = -pow(r_th,2) / ( pow(r_th,2) + 2*pow(r_b,2) );
StkFloat rb = 0.0075; // main bore radius
StkFloat rth = 0.003; // tonehole radius
scatter_ = -pow(rth,2) / ( pow(rth,2) + 2*pow(rb,2) );
// Calculate tonehole coefficients
MY_FLOAT te = 1.4 * r_th; // effective length of the open hole
th_coeff = (te*2*Stk::sampleRate() - 347.23) / (te*2*Stk::sampleRate() + 347.23);
tonehole = new PoleZero;
// Start with tonehole open
tonehole->setA1(-th_coeff);
tonehole->setB0(th_coeff);
tonehole->setB1(-1.0);
// Calculate tonehole coefficients and set for initially open.
StkFloat te = 1.4 * rth; // effective length of the open hole
thCoeff_ = (te*2*Stk::sampleRate() - 347.23) / (te*2*Stk::sampleRate() + 347.23);
tonehole_.setA1(-thCoeff_);
tonehole_.setB0(thCoeff_);
tonehole_.setB1(-1.0);
// Calculate register hole filter coefficients
double r_rh = 0.0015; // register vent radius
te = 1.4 * r_rh; // effective length of the open hole
te = 1.4 * r_rh; // effective length of the open hole
double xi = 0.0; // series resistance term
double zeta = 347.23 + 2*PI*pow(r_b,2)*xi/1.1769;
double psi = 2*PI*pow(r_b,2)*te / (PI*pow(r_rh,2));
rh_coeff = (zeta - 2 * Stk::sampleRate() * psi) / (zeta + 2 * Stk::sampleRate() * psi);
rh_gain = -347.23 / (zeta + 2 * Stk::sampleRate() * psi);
vent = new PoleZero;
vent->setA1(rh_coeff);
vent->setB0(1.0);
vent->setB1(1.0);
double zeta = 347.23 + 2*PI*pow(rb,2)*xi/1.1769;
double psi = 2*PI*pow(rb,2)*te / (PI*pow(r_rh,2));
StkFloat rhCoeff = (zeta - 2 * Stk::sampleRate() * psi) / (zeta + 2 * Stk::sampleRate() * psi);
rhGain_ = -347.23 / (zeta + 2 * Stk::sampleRate() * psi);
vent_.setA1( rhCoeff );
vent_.setB0(1.0);
vent_.setB1(1.0);
// Start with register vent closed
vent->setGain(0.0);
vent_.setGain(0.0);
// Concatenate the STK rawwave path to the rawwave file
vibrato = new WaveLoop( (Stk::rawwavePath() + "sinewave.raw").c_str(), TRUE );
vibrato->setFrequency((MY_FLOAT) 5.735);
outputGain = (MY_FLOAT) 1.0;
noiseGain = (MY_FLOAT) 0.2;
vibratoGain = (MY_FLOAT) 0.01;
vibrato_ = new WaveLoop( (Stk::rawwavePath() + "sinewave.raw").c_str(), true );
vibrato_->setFrequency((StkFloat) 5.735);
outputGain_ = 1.0;
noiseGain_ = 0.2;
vibratoGain_ = 0.01;
}
BlowHole :: ~BlowHole()
{
delete delays[0];
delete delays[1];
delete delays[2];
delete reedTable;
delete filter;
delete tonehole;
delete vent;
delete envelope;
delete noise;
delete vibrato;
delete vibrato_;
}
void BlowHole :: clear()
{
delays[0]->clear();
delays[1]->clear();
delays[2]->clear();
filter->tick((MY_FLOAT) 0.0);
tonehole->tick((MY_FLOAT) 0.0);
vent->tick((MY_FLOAT) 0.0);
delays_[0].clear();
delays_[1].clear();
delays_[2].clear();
filter_.tick( 0.0 );
tonehole_.tick( 0.0 );
vent_.tick( 0.0 );
}
void BlowHole :: setFrequency(MY_FLOAT frequency)
void BlowHole :: setFrequency(StkFloat frequency)
{
MY_FLOAT freakency = frequency;
StkFloat freakency = frequency;
if ( frequency <= 0.0 ) {
std::cerr << "BlowHole: setFrequency parameter is less than or equal to zero!" << std::endl;
freakency = 220.0;
}
// Delay = length - approximate filter delay.
MY_FLOAT delay = (Stk::sampleRate() / freakency) * 0.5 - 3.5;
delay -= delays[0]->getDelay() + delays[2]->getDelay();
StkFloat delay = (Stk::sampleRate() / freakency) * 0.5 - 3.5;
delay -= delays_[0].getDelay() + delays_[2].getDelay();
if (delay <= 0.0) delay = 0.3;
else if (delay > length) delay = length;
delays[1]->setDelay(delay);
else if (delay > length_) delay = length_;
delays_[1].setDelay(delay);
}
void BlowHole :: setVent(MY_FLOAT newValue)
void BlowHole :: setVent(StkFloat newValue)
{
// This method allows setting of the register vent "open-ness" at
// any point between "Open" (newValue = 1) and "Closed"
// (newValue = 0).
MY_FLOAT gain;
StkFloat gain;
if (newValue <= 0.0) gain = 0.0;
else if (newValue >= 1.0) gain = rh_gain;
else gain = newValue * rh_gain;
vent->setGain(gain);
if (newValue <= 0.0)
gain = 0.0;
else if (newValue >= 1.0)
gain = rhGain_;
else
gain = newValue * rhGain_;
vent_.setGain( gain );
}
void BlowHole :: setTonehole(MY_FLOAT newValue)
void BlowHole :: setTonehole(StkFloat newValue)
{
// This method allows setting of the tonehole "open-ness" at
// any point between "Open" (newValue = 1) and "Closed"
// (newValue = 0).
MY_FLOAT new_coeff;
StkFloat new_coeff;
if (newValue <= 0.0) new_coeff = 0.9995;
else if (newValue >= 1.0) new_coeff = th_coeff;
else new_coeff = (newValue * (th_coeff - 0.9995)) + 0.9995;
tonehole->setA1(-new_coeff);
tonehole->setB0(new_coeff);
if ( newValue <= 0.0 )
new_coeff = 0.9995;
else if ( newValue >= 1.0 )
new_coeff = thCoeff_;
else
new_coeff = (newValue * (thCoeff_ - 0.9995)) + 0.9995;
tonehole_.setA1( -new_coeff );
tonehole_.setB0( new_coeff );
}
void BlowHole :: startBlowing(MY_FLOAT amplitude, MY_FLOAT rate)
void BlowHole :: startBlowing(StkFloat amplitude, StkFloat rate)
{
envelope->setRate(rate);
envelope->setTarget(amplitude);
envelope_.setRate( rate );
envelope_.setTarget( amplitude );
}
void BlowHole :: stopBlowing(MY_FLOAT rate)
void BlowHole :: stopBlowing(StkFloat rate)
{
envelope->setRate(rate);
envelope->setTarget((MY_FLOAT) 0.0);
envelope_.setRate( rate );
envelope_.setTarget( 0.0 );
}
void BlowHole :: noteOn(MY_FLOAT frequency, MY_FLOAT amplitude)
void BlowHole :: noteOn(StkFloat frequency, StkFloat amplitude)
{
setFrequency(frequency);
startBlowing((MY_FLOAT) 0.55 + (amplitude * 0.30), amplitude * 0.005);
outputGain = amplitude + 0.001;
this->setFrequency( frequency );
this->startBlowing( 0.55 + (amplitude * 0.30), amplitude * 0.005 );
outputGain_ = amplitude + 0.001;
#if defined(_STK_DEBUG_)
std::cerr << "BlowHole: NoteOn frequency = " << frequency << ", amplitude = " << amplitude << std::endl;
errorString_ << "BlowHole::NoteOn: frequency = " << frequency << ", amplitude = " << amplitude << ".";
handleError( StkError::DEBUG_WARNING );
#endif
}
void BlowHole :: noteOff(MY_FLOAT amplitude)
void BlowHole :: noteOff(StkFloat amplitude)
{
this->stopBlowing(amplitude * 0.01);
this->stopBlowing( amplitude * 0.01 );
#if defined(_STK_DEBUG_)
std::cerr << "BlowHole: NoteOff amplitude = " << amplitude << std::endl;
errorString_ << "BlowHole::NoteOff: amplitude = " << amplitude << ".";
handleError( StkError::DEBUG_WARNING );
#endif
}
MY_FLOAT BlowHole :: tick()
StkFloat BlowHole :: tick()
{
MY_FLOAT pressureDiff;
MY_FLOAT breathPressure;
MY_FLOAT temp;
StkFloat pressureDiff;
StkFloat breathPressure;
StkFloat temp;
// Calculate the breath pressure (envelope + noise + vibrato)
breathPressure = envelope->tick();
breathPressure += breathPressure * noiseGain * noise->tick();
breathPressure += breathPressure * vibratoGain * vibrato->tick();
breathPressure = envelope_.tick();
breathPressure += breathPressure * noiseGain_ * noise_.tick();
breathPressure += breathPressure * vibratoGain_ * vibrato_->tick();
// Calculate the differential pressure = reflected - mouthpiece pressures
pressureDiff = delays[0]->lastOut() - breathPressure;
pressureDiff = delays_[0].lastOut() - breathPressure;
// Do two-port junction scattering for register vent
MY_FLOAT pa = breathPressure + pressureDiff * reedTable->tick(pressureDiff);
MY_FLOAT pb = delays[1]->lastOut();
vent->tick(pa+pb);
StkFloat pa = breathPressure + pressureDiff * reedTable_.tick( pressureDiff );
StkFloat pb = delays_[1].lastOut();
vent_.tick( pa+pb );
lastOutput = delays[0]->tick(vent->lastOut()+pb);
lastOutput *= outputGain;
lastOutput_ = delays_[0].tick( vent_.lastOut()+pb );
lastOutput_ *= outputGain_;
// Do three-port junction scattering (under tonehole)
pa += vent->lastOut();
pb = delays[2]->lastOut();
MY_FLOAT pth = tonehole->lastOut();
temp = scatter * (pa + pb - 2 * pth);
pa += vent_.lastOut();
pb = delays_[2].lastOut();
StkFloat pth = tonehole_.lastOut();
temp = scatter_ * (pa + pb - 2 * pth);
delays[2]->tick(filter->tick(pa + temp) * -0.95);
delays[1]->tick(pb + temp);
tonehole->tick(pa + pb - pth + temp);
delays_[2].tick( filter_.tick(pa + temp) * -0.95 );
delays_[1].tick( pb + temp );
tonehole_.tick( pa + pb - pth + temp );
return lastOutput;
return lastOutput_;
}
void BlowHole :: controlChange(int number, MY_FLOAT value)
StkFloat *BlowHole :: tick(StkFloat *vector, unsigned int vectorSize)
{
MY_FLOAT norm = value * ONE_OVER_128;
return Instrmnt::tick( vector, vectorSize );
}
StkFrames& BlowHole :: tick( StkFrames& frames, unsigned int channel )
{
return Instrmnt::tick( frames, channel );
}
void BlowHole :: controlChange(int number, StkFloat value)
{
StkFloat norm = value * ONE_OVER_128;
if ( norm < 0 ) {
norm = 0.0;
std::cerr << "BlowHole: Control value less than zero!" << std::endl;
errorString_ << "BlowHole::controlChange: control value less than zero ... setting to zero!";
handleError( StkError::WARNING );
}
else if ( norm > 1.0 ) {
norm = 1.0;
std::cerr << "BlowHole: Control value greater than 128.0!" << std::endl;
errorString_ << "BlowHole::controlChange: control value greater than 128.0 ... setting to 128.0!";
handleError( StkError::WARNING );
}
if (number == __SK_ReedStiffness_) // 2
reedTable->setSlope( -0.44 + (0.26 * norm) );
reedTable_.setSlope( -0.44 + (0.26 * norm) );
else if (number == __SK_NoiseLevel_) // 4
noiseGain = ( norm * 0.4);
noiseGain_ = ( norm * 0.4);
else if (number == __SK_ModFrequency_) // 11
this->setTonehole( norm );
else if (number == __SK_ModWheel_) // 1
this->setVent( norm );
else if (number == __SK_AfterTouch_Cont_) // 128
envelope->setValue( norm );
else
std::cerr << "BlowHole: Undefined Control Number (" << number << ")!!" << std::endl;
envelope_.setValue( norm );
else {
errorString_ << "BlowHole::controlChange: undefined control number (" << number << ")!";
handleError( StkError::WARNING );
}
#if defined(_STK_DEBUG_)
std::cerr << "BlowHole: controlChange number = " << number << ", value = " << value << std::endl;
errorString_ << "BlowHole::controlChange: number = " << number << ", value = " << value << ".";
handleError( StkError::DEBUG_WARNING );
#endif
}