Version 4.0

This commit is contained in:
Gary Scavone
2013-09-25 14:50:19 +02:00
committed by Stephen Sinclair
parent 3f126af4e5
commit 81475b04c5
473 changed files with 36355 additions and 28396 deletions

View File

@@ -1,60 +1,93 @@
/*******************************************/
/* Two Pole Filter Class, */
/* by Perry R. Cook, 1995-96 */
/* See books on filters to understand */
/* more about how this works. Nothing */
/* out of the ordinary in this version. */
/*******************************************/
#include "TwoPole.h"
TwoPole :: TwoPole() : Filter()
{
outputs = (MY_FLOAT *) malloc(2 * sizeof(MY_FLOAT));
poleCoeffs[0] = (MY_FLOAT) 0.0;
poleCoeffs[1] = (MY_FLOAT) 0.0;
gain = (MY_FLOAT) 1.0;
this->clear();
}
TwoPole :: ~TwoPole()
{
free(outputs);
}
void TwoPole :: clear()
{
outputs[0] = (MY_FLOAT) 0.0;
outputs[1] = (MY_FLOAT) 0.0;
lastOutput = (MY_FLOAT) 0.0;
}
void TwoPole :: setPoleCoeffs(MY_FLOAT *coeffs)
{
poleCoeffs[0] = coeffs[0];
poleCoeffs[1] = coeffs[1];
}
void TwoPole :: setFreqAndReson(MY_FLOAT freq, MY_FLOAT reson)
{
poleCoeffs[1] = - (reson * reson);
poleCoeffs[0] = (MY_FLOAT) 2.0 * reson * cos(TWO_PI * (double) freq / SRATE);
}
void TwoPole :: setGain(MY_FLOAT aValue)
{
gain = aValue;
}
MY_FLOAT TwoPole :: tick(MY_FLOAT sample) // Perform Filter Operation
{ // TwoPole is a two pole filter (duh!)
MY_FLOAT temp; // Look it up in your favorite DSP text
temp = sample * gain;
temp += poleCoeffs[0] * outputs[0];
temp += poleCoeffs[1] * outputs[1];
outputs[1] = outputs[0];
outputs[0] = temp;
lastOutput = outputs[0];
return lastOutput;
}
/***************************************************/
/*! \class TwoPole
\brief STK two-pole filter class.
This protected Filter subclass implements
a two-pole digital filter. A method is
provided for creating a resonance in the
frequency response while maintaining a nearly
constant filter gain.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
*/
/***************************************************/
#include "TwoPole.h"
#include <math.h>
TwoPole :: TwoPole() : Filter()
{
MY_FLOAT B = 1.0;
MY_FLOAT A[3] = {1.0, 0.0, 0.0};
Filter::setCoefficients( 1, &B, 3, A );
}
TwoPole :: ~TwoPole()
{
}
void TwoPole :: clear(void)
{
Filter::clear();
}
void TwoPole :: setB0(MY_FLOAT b0)
{
b[0] = b0;
}
void TwoPole :: setA1(MY_FLOAT a1)
{
a[1] = a1;
}
void TwoPole :: setA2(MY_FLOAT a2)
{
a[2] = a2;
}
void TwoPole :: setResonance(MY_FLOAT frequency, MY_FLOAT radius, bool normalize)
{
a[2] = radius * radius;
a[1] = (MY_FLOAT) -2.0 * radius * cos(TWO_PI * frequency / Stk::sampleRate());
if ( normalize ) {
// Normalize the filter gain ... not terribly efficient.
MY_FLOAT real = 1 - radius + (a[2] - radius) * cos(TWO_PI * 2 * frequency / Stk::sampleRate());
MY_FLOAT imag = (a[2] - radius) * sin(TWO_PI * 2 * frequency / Stk::sampleRate());
b[0] = sqrt( pow(real, 2) + pow(imag, 2) );
}
}
void TwoPole :: setGain(MY_FLOAT theGain)
{
Filter::setGain(theGain);
}
MY_FLOAT TwoPole :: getGain(void) const
{
return Filter::getGain();
}
MY_FLOAT TwoPole :: lastOut(void) const
{
return Filter::lastOut();
}
MY_FLOAT TwoPole :: tick(MY_FLOAT sample)
{
inputs[0] = gain * sample;
outputs[0] = b[0] * inputs[0] - a[2] * outputs[2] - a[1] * outputs[1];
outputs[2] = outputs[1];
outputs[1] = outputs[0];
return outputs[0];
}
MY_FLOAT *TwoPole :: tick(MY_FLOAT *vector, unsigned int vectorSize)
{
for (unsigned int i=0; i<vectorSize; i++)
vector[i] = tick(vector[i]);
return vector;
}