Version 4.0

This commit is contained in:
Gary Scavone
2013-09-25 14:50:19 +02:00
committed by Stephen Sinclair
parent 3f126af4e5
commit 81475b04c5
473 changed files with 36355 additions and 28396 deletions

View File

@@ -1,28 +1,78 @@
/*******************************************/
/* Two Pole Filter Class, */
/* by Perry R. Cook, 1995-96 */
/* See books on filters to understand */
/* more about how this works. Nothing */
/* out of the ordinary in this version. */
/*******************************************/
#if !defined(__TwoPole_h)
#define __TwoPole_h
#include "Filter.h"
class TwoPole : public Filter
{
protected:
MY_FLOAT poleCoeffs[2];
public:
TwoPole();
~TwoPole();
void clear();
void setPoleCoeffs(MY_FLOAT *coeffs);
void setGain(MY_FLOAT aValue);
void setFreqAndReson(MY_FLOAT freq, MY_FLOAT reson);
MY_FLOAT tick(MY_FLOAT sample);
};
#endif
/***************************************************/
/*! \class TwoPole
\brief STK two-pole filter class.
This protected Filter subclass implements
a two-pole digital filter. A method is
provided for creating a resonance in the
frequency response while maintaining a nearly
constant filter gain.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
*/
/***************************************************/
#if !defined(__TWOPOLE_H)
#define __TWOPOLE_H
#include "Filter.h"
class TwoPole : protected Filter
{
public:
//! Default constructor creates a second-order pass-through filter.
TwoPole();
//! Class destructor.
~TwoPole();
//! Clears the internal states of the filter.
void clear(void);
//! Set the b[0] coefficient value.
void setB0(MY_FLOAT b0);
//! Set the a[1] coefficient value.
void setA1(MY_FLOAT a1);
//! Set the a[2] coefficient value.
void setA2(MY_FLOAT a2);
//! Sets the filter coefficients for a resonance at \e frequency (in Hz).
/*!
This method determines the filter coefficients corresponding to
two complex-conjugate poles with the given \e frequency (in Hz)
and \e radius from the z-plane origin. If \e normalize is true,
the coefficients are then normalized to produce unity gain at \e
frequency (the actual maximum filter gain tends to be slightly
greater than unity when \e radius is not close to one). The
resulting filter frequency response has a resonance at the given
\e frequency. The closer the poles are to the unit-circle (\e
radius close to one), the narrower the resulting resonance width.
An unstable filter will result for \e radius >= 1.0. For a better
resonance filter, use a BiQuad filter. \sa BiQuad filter class
*/
void setResonance(MY_FLOAT frequency, MY_FLOAT radius, bool normalize = FALSE);
//! Set the filter gain.
/*!
The gain is applied at the filter input and does not affect the
coefficient values. The default gain value is 1.0.
*/
void setGain(MY_FLOAT theGain);
//! Return the current filter gain.
MY_FLOAT getGain(void) const;
//! Return the last computed output value.
MY_FLOAT lastOut(void) const;
//! Input one sample to the filter and return one output.
MY_FLOAT tick(MY_FLOAT sample);
//! Input \e vectorSize samples to the filter and return an equal number of outputs in \e vector.
MY_FLOAT *tick(MY_FLOAT *vector, unsigned int vectorSize);
};
#endif