mirror of
https://github.com/thestk/stk
synced 2026-01-19 15:41:52 +00:00
Version 4.0
This commit is contained in:
committed by
Stephen Sinclair
parent
3f126af4e5
commit
81475b04c5
@@ -1,28 +1,78 @@
|
||||
/*******************************************/
|
||||
/* Two Pole Filter Class, */
|
||||
/* by Perry R. Cook, 1995-96 */
|
||||
/* See books on filters to understand */
|
||||
/* more about how this works. Nothing */
|
||||
/* out of the ordinary in this version. */
|
||||
/*******************************************/
|
||||
|
||||
#if !defined(__TwoPole_h)
|
||||
#define __TwoPole_h
|
||||
|
||||
#include "Filter.h"
|
||||
|
||||
class TwoPole : public Filter
|
||||
{
|
||||
protected:
|
||||
MY_FLOAT poleCoeffs[2];
|
||||
public:
|
||||
TwoPole();
|
||||
~TwoPole();
|
||||
void clear();
|
||||
void setPoleCoeffs(MY_FLOAT *coeffs);
|
||||
void setGain(MY_FLOAT aValue);
|
||||
void setFreqAndReson(MY_FLOAT freq, MY_FLOAT reson);
|
||||
MY_FLOAT tick(MY_FLOAT sample);
|
||||
};
|
||||
|
||||
#endif
|
||||
/***************************************************/
|
||||
/*! \class TwoPole
|
||||
\brief STK two-pole filter class.
|
||||
|
||||
This protected Filter subclass implements
|
||||
a two-pole digital filter. A method is
|
||||
provided for creating a resonance in the
|
||||
frequency response while maintaining a nearly
|
||||
constant filter gain.
|
||||
|
||||
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
|
||||
*/
|
||||
/***************************************************/
|
||||
|
||||
#if !defined(__TWOPOLE_H)
|
||||
#define __TWOPOLE_H
|
||||
|
||||
#include "Filter.h"
|
||||
|
||||
class TwoPole : protected Filter
|
||||
{
|
||||
public:
|
||||
|
||||
//! Default constructor creates a second-order pass-through filter.
|
||||
TwoPole();
|
||||
|
||||
//! Class destructor.
|
||||
~TwoPole();
|
||||
|
||||
//! Clears the internal states of the filter.
|
||||
void clear(void);
|
||||
|
||||
//! Set the b[0] coefficient value.
|
||||
void setB0(MY_FLOAT b0);
|
||||
|
||||
//! Set the a[1] coefficient value.
|
||||
void setA1(MY_FLOAT a1);
|
||||
|
||||
//! Set the a[2] coefficient value.
|
||||
void setA2(MY_FLOAT a2);
|
||||
|
||||
//! Sets the filter coefficients for a resonance at \e frequency (in Hz).
|
||||
/*!
|
||||
This method determines the filter coefficients corresponding to
|
||||
two complex-conjugate poles with the given \e frequency (in Hz)
|
||||
and \e radius from the z-plane origin. If \e normalize is true,
|
||||
the coefficients are then normalized to produce unity gain at \e
|
||||
frequency (the actual maximum filter gain tends to be slightly
|
||||
greater than unity when \e radius is not close to one). The
|
||||
resulting filter frequency response has a resonance at the given
|
||||
\e frequency. The closer the poles are to the unit-circle (\e
|
||||
radius close to one), the narrower the resulting resonance width.
|
||||
An unstable filter will result for \e radius >= 1.0. For a better
|
||||
resonance filter, use a BiQuad filter. \sa BiQuad filter class
|
||||
*/
|
||||
void setResonance(MY_FLOAT frequency, MY_FLOAT radius, bool normalize = FALSE);
|
||||
|
||||
//! Set the filter gain.
|
||||
/*!
|
||||
The gain is applied at the filter input and does not affect the
|
||||
coefficient values. The default gain value is 1.0.
|
||||
*/
|
||||
void setGain(MY_FLOAT theGain);
|
||||
|
||||
//! Return the current filter gain.
|
||||
MY_FLOAT getGain(void) const;
|
||||
|
||||
//! Return the last computed output value.
|
||||
MY_FLOAT lastOut(void) const;
|
||||
|
||||
//! Input one sample to the filter and return one output.
|
||||
MY_FLOAT tick(MY_FLOAT sample);
|
||||
|
||||
//! Input \e vectorSize samples to the filter and return an equal number of outputs in \e vector.
|
||||
MY_FLOAT *tick(MY_FLOAT *vector, unsigned int vectorSize);
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
Reference in New Issue
Block a user