mirror of
https://github.com/thestk/stk
synced 2026-01-11 20:11:52 +00:00
Version 4.0
This commit is contained in:
committed by
Stephen Sinclair
parent
3f126af4e5
commit
81475b04c5
140
include/BiQuad.h
140
include/BiQuad.h
@@ -1,40 +1,100 @@
|
||||
/*******************************************/
|
||||
/*
|
||||
BiQuad (2-pole, 2-zero) Filter Class,
|
||||
by Perry R. Cook, 1995-96.
|
||||
Modified by Julius Smith, 2000:
|
||||
setA1,setA2,setB1,setB2
|
||||
|
||||
See books on filters to understand
|
||||
more about how this works. Nothing
|
||||
out of the ordinary in this version.
|
||||
*/
|
||||
/*******************************************/
|
||||
|
||||
#if !defined(__BiQuad_h)
|
||||
#define __BiQuad_h
|
||||
|
||||
#include "Filter.h"
|
||||
|
||||
class BiQuad : public Filter
|
||||
{
|
||||
protected:
|
||||
MY_FLOAT poleCoeffs[2];
|
||||
MY_FLOAT zeroCoeffs[2];
|
||||
public:
|
||||
BiQuad();
|
||||
~BiQuad();
|
||||
void clear();
|
||||
void setA1(MY_FLOAT a1);
|
||||
void setA2(MY_FLOAT a2);
|
||||
void setB1(MY_FLOAT b1);
|
||||
void setB2(MY_FLOAT b2);
|
||||
void setPoleCoeffs(MY_FLOAT *coeffs);
|
||||
void setZeroCoeffs(MY_FLOAT *coeffs);
|
||||
void setGain(MY_FLOAT aValue);
|
||||
void setFreqAndReson(MY_FLOAT freq, MY_FLOAT reson);
|
||||
void setEqualGainZeroes();
|
||||
MY_FLOAT tick(MY_FLOAT sample);
|
||||
};
|
||||
|
||||
#endif
|
||||
/***************************************************/
|
||||
/*! \class BiQuad
|
||||
\brief STK biquad (two-pole, two-zero) filter class.
|
||||
|
||||
This protected Filter subclass implements a
|
||||
two-pole, two-zero digital filter. A method
|
||||
is provided for creating a resonance in the
|
||||
frequency response while maintaining a constant
|
||||
filter gain.
|
||||
|
||||
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
|
||||
*/
|
||||
/***************************************************/
|
||||
|
||||
#if !defined(__BIQUAD_H)
|
||||
#define __BIQUAD_H
|
||||
|
||||
#include "Filter.h"
|
||||
|
||||
class BiQuad : protected Filter
|
||||
{
|
||||
public:
|
||||
|
||||
//! Default constructor creates a second-order pass-through filter.
|
||||
BiQuad();
|
||||
|
||||
//! Class destructor.
|
||||
virtual ~BiQuad();
|
||||
|
||||
//! Clears all internal states of the filter.
|
||||
void clear(void);
|
||||
|
||||
//! Set the b[0] coefficient value.
|
||||
void setB0(MY_FLOAT b0);
|
||||
|
||||
//! Set the b[1] coefficient value.
|
||||
void setB1(MY_FLOAT b1);
|
||||
|
||||
//! Set the b[2] coefficient value.
|
||||
void setB2(MY_FLOAT b2);
|
||||
|
||||
//! Set the a[1] coefficient value.
|
||||
void setA1(MY_FLOAT a1);
|
||||
|
||||
//! Set the a[2] coefficient value.
|
||||
void setA2(MY_FLOAT a2);
|
||||
|
||||
//! Sets the filter coefficients for a resonance at \e frequency (in Hz).
|
||||
/*!
|
||||
This method determines the filter coefficients corresponding to
|
||||
two complex-conjugate poles with the given \e frequency (in Hz)
|
||||
and \e radius from the z-plane origin. If \e normalize is true,
|
||||
the filter zeros are placed at z = 1, z = -1, and the coefficients
|
||||
are then normalized to produce a constant unity peak gain
|
||||
(independent of the filter \e gain parameter). The resulting
|
||||
filter frequency response has a resonance at the given \e
|
||||
frequency. The closer the poles are to the unit-circle (\e radius
|
||||
close to one), the narrower the resulting resonance width.
|
||||
*/
|
||||
void setResonance(MY_FLOAT frequency, MY_FLOAT radius, bool normalize = FALSE);
|
||||
|
||||
//! Set the filter coefficients for a notch at \e frequency (in Hz).
|
||||
/*!
|
||||
This method determines the filter coefficients corresponding to
|
||||
two complex-conjugate zeros with the given \e frequency (in Hz)
|
||||
and \e radius from the z-plane origin. No filter normalization
|
||||
is attempted.
|
||||
*/
|
||||
void setNotch(MY_FLOAT frequency, MY_FLOAT radius);
|
||||
|
||||
//! Sets the filter zeroes for equal resonance gain.
|
||||
/*!
|
||||
When using the filter as a resonator, zeroes places at z = 1, z
|
||||
= -1 will result in a constant gain at resonance of 1 / (1 - R),
|
||||
where R is the pole radius setting.
|
||||
|
||||
*/
|
||||
void setEqualGainZeroes();
|
||||
|
||||
//! Set the filter gain.
|
||||
/*!
|
||||
The gain is applied at the filter input and does not affect the
|
||||
coefficient values. The default gain value is 1.0.
|
||||
*/
|
||||
void setGain(MY_FLOAT theGain);
|
||||
|
||||
//! Return the current filter gain.
|
||||
MY_FLOAT getGain(void) const;
|
||||
|
||||
//! Return the last computed output value.
|
||||
MY_FLOAT lastOut(void) const;
|
||||
|
||||
//! Input one sample to the filter and return one output.
|
||||
MY_FLOAT tick(MY_FLOAT sample);
|
||||
|
||||
//! Input \e vectorSize samples to the filter and return an equal number of outputs in \e vector.
|
||||
MY_FLOAT *tick(MY_FLOAT *vector, unsigned int vectorSize);
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
Reference in New Issue
Block a user