Version 4.0

This commit is contained in:
Gary Scavone
2013-09-25 14:50:19 +02:00
committed by Stephen Sinclair
parent 3f126af4e5
commit 81475b04c5
473 changed files with 36355 additions and 28396 deletions

View File

@@ -1,40 +1,100 @@
/*******************************************/
/*
BiQuad (2-pole, 2-zero) Filter Class,
by Perry R. Cook, 1995-96.
Modified by Julius Smith, 2000:
setA1,setA2,setB1,setB2
See books on filters to understand
more about how this works. Nothing
out of the ordinary in this version.
*/
/*******************************************/
#if !defined(__BiQuad_h)
#define __BiQuad_h
#include "Filter.h"
class BiQuad : public Filter
{
protected:
MY_FLOAT poleCoeffs[2];
MY_FLOAT zeroCoeffs[2];
public:
BiQuad();
~BiQuad();
void clear();
void setA1(MY_FLOAT a1);
void setA2(MY_FLOAT a2);
void setB1(MY_FLOAT b1);
void setB2(MY_FLOAT b2);
void setPoleCoeffs(MY_FLOAT *coeffs);
void setZeroCoeffs(MY_FLOAT *coeffs);
void setGain(MY_FLOAT aValue);
void setFreqAndReson(MY_FLOAT freq, MY_FLOAT reson);
void setEqualGainZeroes();
MY_FLOAT tick(MY_FLOAT sample);
};
#endif
/***************************************************/
/*! \class BiQuad
\brief STK biquad (two-pole, two-zero) filter class.
This protected Filter subclass implements a
two-pole, two-zero digital filter. A method
is provided for creating a resonance in the
frequency response while maintaining a constant
filter gain.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
*/
/***************************************************/
#if !defined(__BIQUAD_H)
#define __BIQUAD_H
#include "Filter.h"
class BiQuad : protected Filter
{
public:
//! Default constructor creates a second-order pass-through filter.
BiQuad();
//! Class destructor.
virtual ~BiQuad();
//! Clears all internal states of the filter.
void clear(void);
//! Set the b[0] coefficient value.
void setB0(MY_FLOAT b0);
//! Set the b[1] coefficient value.
void setB1(MY_FLOAT b1);
//! Set the b[2] coefficient value.
void setB2(MY_FLOAT b2);
//! Set the a[1] coefficient value.
void setA1(MY_FLOAT a1);
//! Set the a[2] coefficient value.
void setA2(MY_FLOAT a2);
//! Sets the filter coefficients for a resonance at \e frequency (in Hz).
/*!
This method determines the filter coefficients corresponding to
two complex-conjugate poles with the given \e frequency (in Hz)
and \e radius from the z-plane origin. If \e normalize is true,
the filter zeros are placed at z = 1, z = -1, and the coefficients
are then normalized to produce a constant unity peak gain
(independent of the filter \e gain parameter). The resulting
filter frequency response has a resonance at the given \e
frequency. The closer the poles are to the unit-circle (\e radius
close to one), the narrower the resulting resonance width.
*/
void setResonance(MY_FLOAT frequency, MY_FLOAT radius, bool normalize = FALSE);
//! Set the filter coefficients for a notch at \e frequency (in Hz).
/*!
This method determines the filter coefficients corresponding to
two complex-conjugate zeros with the given \e frequency (in Hz)
and \e radius from the z-plane origin. No filter normalization
is attempted.
*/
void setNotch(MY_FLOAT frequency, MY_FLOAT radius);
//! Sets the filter zeroes for equal resonance gain.
/*!
When using the filter as a resonator, zeroes places at z = 1, z
= -1 will result in a constant gain at resonance of 1 / (1 - R),
where R is the pole radius setting.
*/
void setEqualGainZeroes();
//! Set the filter gain.
/*!
The gain is applied at the filter input and does not affect the
coefficient values. The default gain value is 1.0.
*/
void setGain(MY_FLOAT theGain);
//! Return the current filter gain.
MY_FLOAT getGain(void) const;
//! Return the last computed output value.
MY_FLOAT lastOut(void) const;
//! Input one sample to the filter and return one output.
MY_FLOAT tick(MY_FLOAT sample);
//! Input \e vectorSize samples to the filter and return an equal number of outputs in \e vector.
MY_FLOAT *tick(MY_FLOAT *vector, unsigned int vectorSize);
};
#endif