Added template to create new VS2017 applications easily.

This commit is contained in:
cepthomas
2018-11-13 11:52:08 -06:00
parent 448c12b0f4
commit 2fffa79174
8 changed files with 22 additions and 25 deletions

View File

@@ -51,7 +51,7 @@ If you wish to use a different compiler than that selected by configure, specify
## Windows
MinGW support is provided in the configure script. In addition, Visual C++ 6.0 project files are included for each of the example STK projects, though these may not work with more recent versions of Visual Studio.
MinGW support is provided in the configure script. In addition, Visual Studio 2017 project files are included for each of the example STK projects.
##iOS

View File

@@ -63,7 +63,7 @@ against one of the fundamental design goals of the ToolKit - platform
independence.
For those instances where a simple GUI with sliders and buttons is
helpful, we use Tcl/Tk (http://dev.scriptics.com) which is freely
helpful, we use Tcl/Tk (https://www.tcl.tk/) which is freely
distributed for all the supported ToolKit platforms. A number of
Tcl/Tk GUI scripts are distributed with the ToolKit release. For
control, the Synthesis Toolkit uses raw MIDI (on supported platforms),
@@ -76,7 +76,7 @@ text message synthesis control format).
See the individual README's (e.g. README-linux) in the /doc directory
for platform specific information and system requirements. In
general, you will use the configure script to create Makefiles on unix
platforms (and MinGW) or the VC++ workspace files to compile the
platforms (and MinGW) or the VS2017 workspace files to compile the
example programs. To use the Tcl/Tk GUIs, you will need Tcl/Tk
version 8.0 or higher.
@@ -104,10 +104,10 @@ Md2Skini program.
Realtime audio input capabilities were added to STK with release 3.0,
though the behavior of such is very hardware dependent. Under Linux
and Macintosh OS-X, audio input and output are possible with very low
latency. Using the Windoze DirectSound API, minimum dependable output
latency. Using the Windows DirectSound API, minimum dependable output
sound latency seems to be around 20 milliseconds or so, while input
sound latency is generally higher. Performance with the ASIO audio
API on Windoze provides much better performance.
API on Windows provides much better performance.
As mentioned above, it is possible to record the audio ouput of an STK
program to .snd, .wav, .raw, .aif, and .mat (Matlab MAT-file) output

View File

@@ -2,27 +2,24 @@ The Synthesis ToolKit in C++ (STK)
By Perry R. Cook and Gary P. Scavone, 1995--2017.
Please read the file README for more general STK information.
Please read the file README.md for more general STK information.
The configure script supports MinGW.
Alternatively Visual Studio may be used. The demo project contains a VS2017 build file - demo.sln. Note that if
you are creating a brand new VS project it's probably easiest to copy those .sln and .vcxproj files and manually
edit them to taste.
The other projects in the projects directories contain VS6 build files which cannot be used directly with VS2017.
However if you do want to use VS2017 there is an update process.
- Open the .dsw file with VS2017.
- Accept the one-way upgrade dialog. This will create new .sln and .vcxproj files.
- You will probably get a bad sdk version error. Right-click the solution, select Retarget solution and pick one.
- Open the project properties and select Debug configuration then C/C++ General tab. Set Debug Information Format
to Program Database (/Zi).
- Optionally in project properties you can disable warning 4996.
Alternatively Visual Studio may be used. The folders in the projects directory contain VS2017 solution files.
If you are creating a new stk application, it's easiest to use the supplied template:
- Copy stk\projects\stk-template.zip to C:\Users\<user>\Documents\Visual Studio 2017\Templates\ProjectTemplates\Visual C++ Project\
- Start VS2017.
- Select create new project...
- Select Visual C++.
- Select stk-template and enter your preferred project name and location. Note that if you do not put the project at the same level as stk\projects you will have to fix all paths in the project properties to match.
- The template is based on one of the projects in the examples directory. Add/remove files as needed and edit main.cpp to taste.
To use the Tcl/Tk GUIs, you will have to install Tcl/Tk and build using MinGW.
With Windows XP and later, piping works as under unix. Simply fire up the script files (e.g. StkDemo.bat) by either double-clicking on them or from within a shell.
The DirectSound, WASAPI and Steinberg ASIO audio APIs are supported for realtime audio input/output. The Visual C++ project files included with this distribution are configured to use all supported APIs. In order to use the ASIO API, it is necessary to use the preprocessor definition __WINDOWS_ASIO__, as well as include most of the files in the /src/include/ directory (i.e. asio.h, asio.cpp, ...). If you have a good quality soundcard and a native ASIO driver (not emulated), you are likely to get much better input/output response using that.
The DirectSound, WASAPI and Steinberg ASIO audio APIs are supported for realtime audio input/output. The VS2017 project files included with this distribution are configured to use all supported APIs. In order to use the ASIO API, it is necessary to use the preprocessor definition __WINDOWS_ASIO__, as well as include most of the files in the /src/include/ directory (i.e. asio.h, asio.cpp, ...). If you have a good quality soundcard and a native ASIO driver (not emulated), you are likely to get much better input/output response using that.
When using the DirectSound API for audio input, latency can be high. If you experience realtime audio "stuttering", you should experiment with different "buffer size" and "number of buffers" values.

View File

@@ -33,7 +33,7 @@ The stk::Iir class implements the standard difference equation
a[0]*y[n] = b[0]*x[n] + ... + b[nb]*x[n-nb] - a[1]*y[n-1] - ... - a[na]*y[n-na],
\endcode
where "b" values are numerator coefficients and "a" values are denominator coefficients. Note that if the first denominator coefficient is not 1.0, the Iir class automatically normalizes all filter coefficients by that value. The coefficient values are passed to the Iir class via a C++ <a href="http://www.roguewave.com/support/docs/sourcepro/stdlibref/vector.html">vector</a>, a container object provided by the C++ Standard Library.
where "b" values are numerator coefficients and "a" values are denominator coefficients. Note that if the first denominator coefficient is not 1.0, the Iir class automatically normalizes all filter coefficients by that value. The coefficient values are passed to the Iir class via a C++ <a href="http://www.cplusplus.com/reference/vector/vector/">vector</a>, a container object provided by the C++ Standard Library.
Most STK classes use more specific types of digital filters, such as the stk::OneZero, stk::OnePole, stk::TwoPole, or stk::BiQuad varieties. These classes inherit from the stk::Filter abstract base class and provide specific functionality particular to their use, as well as functions to independently control individual coefficient values.

View File

@@ -20,14 +20,14 @@ Here's a link to a book that includes an chapter on STK.
The Synthesis ToolKit in C++ (STK) is a set of open source audio signal processing and algorithmic synthesis classes written in the C++ programming language. STK was designed to facilitate rapid development of music synthesis and audio processing software, with an emphasis on cross-platform functionality, realtime control, ease of use, and educational example code. The Synthesis ToolKit is extremely portable (it's mostly platform-independent C and C++ code), and it's completely user-extensible (all source included, no unusual libraries, and no hidden drivers). We like to think that this increases the chances that our programs will still work in another 5-10 years. In fact, the ToolKit has been working continuously for nearly 20 years now. STK currently runs with realtime support (audio and MIDI) on Linux, Macintosh OS X, and Windows computer platforms. Generic, non-realtime support has been tested under NeXTStep, Sun, and other platforms and should work with any standard C++ compiler.
The Synthesis ToolKit is free. The only parts of the Synthesis ToolKit that are platform-dependent concern real-time audio and MIDI input and output, and that is taken care of with a few special classes. The interface for MIDI input and the simple <A HREF="http://dev.scriptics.com">Tcl/Tk</A> graphical user interfaces (GUIs) provided is the same, so it's easy to experiment in real time using either the GUIs or MIDI. The Synthesis ToolKit can generate simultaneous SND (AU), WAV, AIFF, and MAT-file output soundfile formats (as well as realtime sound output), so you can view your results using one of a large variety of sound/signal analysis tools already available (e.g. <A HREF="http://www-ccrma.stanford.edu/software/snd/">Snd</A>, Cool Edit, Matlab).
The Synthesis ToolKit is free. The only parts of the Synthesis ToolKit that are platform-dependent concern real-time audio and MIDI input and output, and that is taken care of with a few special classes. The interface for MIDI input and the simple <A HREF="https://www.tcl.tk/">Tcl/Tk</A> graphical user interfaces (GUIs) provided is the same, so it's easy to experiment in real time using either the GUIs or MIDI. The Synthesis ToolKit can generate simultaneous SND (AU), WAV, AIFF, and MAT-file output soundfile formats (as well as realtime sound output), so you can view your results using one of a large variety of sound/signal analysis tools already available (e.g. <A HREF="http://www-ccrma.stanford.edu/software/snd/">Snd</A>, Cool Edit, Matlab).
<H4>What the <I>Synthesis ToolKit</I> is not.</H4>
The Synthesis Toolkit is not one particular program. Rather, it is a set of C++ classes that you can use to create your own programs. A few example applications are provided to demonstrate some of the ways to use the classes. If you have specific needs, you will probably have to either modify the example programs or write a new program altogether. Further, the example programs don't have a fancy GUI wrapper. It is easy to embed STK classes inside a GUI environment but we have chosen to focus our energy on the audio signal processing issues. Spending hundreds of hours making platform-dependent graphical user interfaces would go against one of the fundamental design goals of the ToolKit - platform independence.
For those instances where a simple GUI with sliders and buttons is helpful, we use <A HREF="http://dev.scriptics.com">Tcl/Tk</A> (that is freely distributed for all the supported ToolKit platforms). A number of Tcl/Tk GUI scripts are distributed with the ToolKit release. For control, the Synthesis Toolkit uses raw MIDI (on supported platforms), and SKINI (Synthesis ToolKit Instrument Network Interface, a MIDI-like text message synthesis control format).
For those instances where a simple GUI with sliders and buttons is helpful, we use <A HREF="https://www.tcl.tk/">Tcl/Tk</A> (that is freely distributed for all the supported ToolKit platforms). A number of Tcl/Tk GUI scripts are distributed with the ToolKit release. For control, the Synthesis Toolkit uses raw MIDI (on supported platforms), and SKINI (Synthesis ToolKit Instrument Network Interface, a MIDI-like text message synthesis control format).
<H4>A brief history of the <I>Synthesis ToolKit in C++.</I></H4>
@@ -39,7 +39,7 @@ everything to C++ on SGI hardware, added real-time capabilities, and
greatly expanded the synthesis techniques available. With the help of
Bill Putnam, Perry also made a port of STK to Windows95. Gary Scavone
began using STK extensively in the summer of 1997 and completed a full
port of STK to Linux early in 1998. He finished the fully compatable
port of STK to Linux early in 1998. He finished the fully compatible
Windows port (using DirectSound API) in June 1998. Numerous
improvements and extensions have been made since then.

View File

@@ -14,7 +14,7 @@ We have written this program to accept control messages from \c STDIN. Assuming
threebees < scores/bachfugue.ski
\endcode
For more fun, surf to <A HREF="http://kern.humdrum.net/">Kern Scores</A> for a huge assortment of other scorefiles that can be downloaded in the SKINI format.
For more fun, surf to <A HREF="http://kern.ccarh.org/">Kern Scores</A> for a huge assortment of other scorefiles that can be downloaded in the SKINI format.
Another easy extension would be to add the \c stk::Messager::startMidiInput() function to the program and then play the instruments via a MIDI keyboard.

View File

@@ -94,7 +94,7 @@ All STK programs in this distribution take input control data in the form of <A
<LI>Acquire realtime MIDI messages from a MIDI port on your computer.</LI>
</OL>
<A HREF="http://dev.scriptics.com">Tcl/Tk</A> graphical user interfaces (GUI) are provided with this distribution that can generate realtime SKINI messages. Note that the Messager class allows multiple simultaneous socket client connections, together with MIDI and/or piped input. The <I><B>Md2Skini</B></I> program (in the <I><B>demo</B></I> directory) is mostly obsolete but can be used to create SKINI scorefiles from realtime MIDI input.
<A HREF="https://www.tcl.tk/">Tcl/Tk</A> graphical user interfaces (GUI) are provided with this distribution that can generate realtime SKINI messages. Note that the Messager class allows multiple simultaneous socket client connections, together with MIDI and/or piped input. The <I><B>Md2Skini</B></I> program (in the <I><B>demo</B></I> directory) is mostly obsolete but can be used to create SKINI scorefiles from realtime MIDI input.
\section voices Demo: STK Instruments
@@ -178,7 +178,7 @@ from the <I><B>demo</B></I> directory will play the scorefile <I>bookert.ski</I>
\section tcl Realtime Control Input using Tcl/Tk Graphical User Interfaces:
There are a number of <A HREF="http://dev.scriptics.com">Tcl/Tk</A> GUIs supplied with the STK projects. These scripts require Tcl/Tk version 8.0 or later, which can be downloaded for free over the WWW. On Unix and Windows2000/XP platforms, you can run the various executable scripts (e.g. StkDemo.bat) provided with each project to start everything up (you may need to symbolically link the wishXX executable to the name <I>wish</I>). The Physical.bat script just implements the following command-line sequence:
There are a number of <A HREF="https://www.tcl.tk/">Tcl/Tk</A> GUIs supplied with the STK projects. These scripts require Tcl/Tk version 8.0 or later, which can be downloaded for free over the WWW. On Unix and Windows2000/XP platforms, you can run the various executable scripts (e.g. StkDemo.bat) provided with each project to start everything up (you may need to symbolically link the wishXX executable to the name <I>wish</I>). The Physical.bat script just implements the following command-line sequence:
\code
wish < tcl/Physical.tcl | stk-demo Clarinet -or -ip

BIN
projects/stk-template.zip Normal file

Binary file not shown.