mirror of
https://github.com/thestk/stk
synced 2026-01-12 12:31:53 +00:00
Version 4.1
This commit is contained in:
committed by
Stephen Sinclair
parent
81475b04c5
commit
2f09fcd019
226
src/DelayL.cpp
226
src/DelayL.cpp
@@ -1,107 +1,119 @@
|
||||
/***************************************************/
|
||||
/*! \class DelayL
|
||||
\brief STK linear interpolating delay line class.
|
||||
|
||||
This Delay subclass implements a fractional-
|
||||
length digital delay-line using first-order
|
||||
linear interpolation. A fixed maximum length
|
||||
of 4095 and a delay of zero is set using the
|
||||
default constructor. Alternatively, the
|
||||
delay and maximum length can be set during
|
||||
instantiation with an overloaded constructor.
|
||||
|
||||
Linear interpolation is an efficient technique
|
||||
for achieving fractional delay lengths, though
|
||||
it does introduce high-frequency signal
|
||||
attenuation to varying degrees depending on the
|
||||
fractional delay setting. The use of higher
|
||||
order Lagrange interpolators can typically
|
||||
improve (minimize) this attenuation characteristic.
|
||||
|
||||
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
|
||||
*/
|
||||
/***************************************************/
|
||||
|
||||
#include "DelayL.h"
|
||||
#include <iostream.h>
|
||||
|
||||
DelayL :: DelayL()
|
||||
{
|
||||
}
|
||||
|
||||
DelayL :: DelayL(MY_FLOAT theDelay, long maxDelay)
|
||||
{
|
||||
// Writing before reading allows delays from 0 to length-1.
|
||||
length = maxDelay+1;
|
||||
|
||||
if ( length > 4096 ) {
|
||||
// We need to delete the previously allocated inputs.
|
||||
delete [] inputs;
|
||||
inputs = new MY_FLOAT[length];
|
||||
this->clear();
|
||||
}
|
||||
|
||||
inPoint = 0;
|
||||
this->setDelay(theDelay);
|
||||
}
|
||||
|
||||
DelayL :: ~DelayL()
|
||||
{
|
||||
}
|
||||
|
||||
void DelayL :: setDelay(MY_FLOAT theDelay)
|
||||
{
|
||||
MY_FLOAT outPointer;
|
||||
|
||||
if (theDelay > length-1) {
|
||||
cerr << "DelayL: setDelay(" << theDelay << ") too big!" << endl;
|
||||
// Force delay to maxLength
|
||||
outPointer = inPoint + 1.0;
|
||||
delay = length - 1;
|
||||
}
|
||||
else if (theDelay < 0 ) {
|
||||
cerr << "DelayL: setDelay(" << theDelay << ") less than zero!" << endl;
|
||||
outPointer = inPoint;
|
||||
delay = 0;
|
||||
}
|
||||
else {
|
||||
outPointer = inPoint - theDelay; // read chases write
|
||||
delay = theDelay;
|
||||
}
|
||||
|
||||
while (outPointer < 0)
|
||||
outPointer += length; // modulo maximum length
|
||||
|
||||
outPoint = (long) outPointer; // integer part
|
||||
alpha = outPointer - outPoint; // fractional part
|
||||
omAlpha = (MY_FLOAT) 1.0 - alpha;
|
||||
}
|
||||
|
||||
MY_FLOAT DelayL :: getDelay(void) const
|
||||
{
|
||||
return delay;
|
||||
}
|
||||
|
||||
MY_FLOAT DelayL :: tick(MY_FLOAT sample)
|
||||
{
|
||||
inputs[inPoint++] = sample;
|
||||
|
||||
// Check for end condition
|
||||
if (inPoint == length)
|
||||
inPoint -= length;
|
||||
|
||||
// First 1/2 of interpolation
|
||||
outputs[0] = inputs[outPoint++] * omAlpha;
|
||||
// Check for end condition
|
||||
if (outPoint < length) {
|
||||
// Second 1/2 of interpolation
|
||||
outputs[0] += inputs[outPoint] * alpha;
|
||||
}
|
||||
else { // if at end ...
|
||||
// Second 1/2 of interpolation
|
||||
outputs[0] += inputs[0] * alpha;
|
||||
outPoint -= length;
|
||||
}
|
||||
|
||||
return outputs[0];
|
||||
}
|
||||
/***************************************************/
|
||||
/*! \class DelayL
|
||||
\brief STK linear interpolating delay line class.
|
||||
|
||||
This Delay subclass implements a fractional-
|
||||
length digital delay-line using first-order
|
||||
linear interpolation. A fixed maximum length
|
||||
of 4095 and a delay of zero is set using the
|
||||
default constructor. Alternatively, the
|
||||
delay and maximum length can be set during
|
||||
instantiation with an overloaded constructor.
|
||||
|
||||
Linear interpolation is an efficient technique
|
||||
for achieving fractional delay lengths, though
|
||||
it does introduce high-frequency signal
|
||||
attenuation to varying degrees depending on the
|
||||
fractional delay setting. The use of higher
|
||||
order Lagrange interpolators can typically
|
||||
improve (minimize) this attenuation characteristic.
|
||||
|
||||
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
|
||||
*/
|
||||
/***************************************************/
|
||||
|
||||
#include "DelayL.h"
|
||||
#include <iostream.h>
|
||||
|
||||
DelayL :: DelayL()
|
||||
{
|
||||
doNextOut = true;
|
||||
}
|
||||
|
||||
DelayL :: DelayL(MY_FLOAT theDelay, long maxDelay)
|
||||
{
|
||||
// Writing before reading allows delays from 0 to length-1.
|
||||
length = maxDelay+1;
|
||||
|
||||
if ( length > 4096 ) {
|
||||
// We need to delete the previously allocated inputs.
|
||||
delete [] inputs;
|
||||
inputs = new MY_FLOAT[length];
|
||||
this->clear();
|
||||
}
|
||||
|
||||
inPoint = 0;
|
||||
this->setDelay(theDelay);
|
||||
doNextOut = true;
|
||||
}
|
||||
|
||||
DelayL :: ~DelayL()
|
||||
{
|
||||
}
|
||||
|
||||
void DelayL :: setDelay(MY_FLOAT theDelay)
|
||||
{
|
||||
MY_FLOAT outPointer;
|
||||
|
||||
if (theDelay > length-1) {
|
||||
cerr << "DelayL: setDelay(" << theDelay << ") too big!" << endl;
|
||||
// Force delay to maxLength
|
||||
outPointer = inPoint + 1.0;
|
||||
delay = length - 1;
|
||||
}
|
||||
else if (theDelay < 0 ) {
|
||||
cerr << "DelayL: setDelay(" << theDelay << ") less than zero!" << endl;
|
||||
outPointer = inPoint;
|
||||
delay = 0;
|
||||
}
|
||||
else {
|
||||
outPointer = inPoint - theDelay; // read chases write
|
||||
delay = theDelay;
|
||||
}
|
||||
|
||||
while (outPointer < 0)
|
||||
outPointer += length; // modulo maximum length
|
||||
|
||||
outPoint = (long) outPointer; // integer part
|
||||
alpha = outPointer - outPoint; // fractional part
|
||||
omAlpha = (MY_FLOAT) 1.0 - alpha;
|
||||
}
|
||||
|
||||
MY_FLOAT DelayL :: getDelay(void) const
|
||||
{
|
||||
return delay;
|
||||
}
|
||||
|
||||
MY_FLOAT DelayL :: nextOut(void)
|
||||
{
|
||||
if ( doNextOut ) {
|
||||
// First 1/2 of interpolation
|
||||
nextOutput = inputs[outPoint] * omAlpha;
|
||||
// Second 1/2 of interpolation
|
||||
if (outPoint+1 < length)
|
||||
nextOutput += inputs[outPoint+1] * alpha;
|
||||
else
|
||||
nextOutput += inputs[0] * alpha;
|
||||
doNextOut = false;
|
||||
}
|
||||
|
||||
return nextOutput;
|
||||
}
|
||||
|
||||
MY_FLOAT DelayL :: tick(MY_FLOAT sample)
|
||||
{
|
||||
inputs[inPoint++] = sample;
|
||||
|
||||
// Increment input pointer modulo length.
|
||||
if (inPoint == length)
|
||||
inPoint -= length;
|
||||
|
||||
outputs[0] = nextOut();
|
||||
doNextOut = true;
|
||||
|
||||
// Increment output pointer modulo length.
|
||||
if (++outPoint >= length)
|
||||
outPoint -= length;
|
||||
|
||||
return outputs[0];
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user