mirror of
https://github.com/thestk/stk
synced 2026-01-13 04:51:53 +00:00
Version 4.1
This commit is contained in:
committed by
Stephen Sinclair
parent
81475b04c5
commit
2f09fcd019
246
src/DelayA.cpp
246
src/DelayA.cpp
@@ -1,117 +1,129 @@
|
||||
/***************************************************/
|
||||
/*! \class DelayA
|
||||
\brief STK allpass interpolating delay line class.
|
||||
|
||||
This Delay subclass implements a fractional-
|
||||
length digital delay-line using a first-order
|
||||
allpass filter. A fixed maximum length
|
||||
of 4095 and a delay of 0.5 is set using the
|
||||
default constructor. Alternatively, the
|
||||
delay and maximum length can be set during
|
||||
instantiation with an overloaded constructor.
|
||||
|
||||
An allpass filter has unity magnitude gain but
|
||||
variable phase delay properties, making it useful
|
||||
in achieving fractional delays without affecting
|
||||
a signal's frequency magnitude response. In
|
||||
order to achieve a maximally flat phase delay
|
||||
response, the minimum delay possible in this
|
||||
implementation is limited to a value of 0.5.
|
||||
|
||||
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
|
||||
*/
|
||||
/***************************************************/
|
||||
|
||||
#include "DelayA.h"
|
||||
#include <iostream.h>
|
||||
|
||||
DelayA :: DelayA()
|
||||
{
|
||||
this->setDelay( 0.5 );
|
||||
apInput = 0.0;
|
||||
}
|
||||
|
||||
DelayA :: DelayA(MY_FLOAT theDelay, long maxDelay)
|
||||
{
|
||||
// Writing before reading allows delays from 0 to length-1.
|
||||
length = maxDelay+1;
|
||||
|
||||
if ( length > 4096 ) {
|
||||
// We need to delete the previously allocated inputs.
|
||||
delete [] inputs;
|
||||
inputs = new MY_FLOAT[length];
|
||||
this->clear();
|
||||
}
|
||||
|
||||
inPoint = 0;
|
||||
this->setDelay(theDelay);
|
||||
}
|
||||
|
||||
DelayA :: ~DelayA()
|
||||
{
|
||||
}
|
||||
|
||||
void DelayA :: clear()
|
||||
{
|
||||
Delay::clear();
|
||||
apInput = 0.0;
|
||||
}
|
||||
|
||||
void DelayA :: setDelay(MY_FLOAT theDelay)
|
||||
{
|
||||
MY_FLOAT outPointer;
|
||||
|
||||
if (theDelay > length-1) {
|
||||
cerr << "DelayA: setDelay(" << theDelay << ") too big!" << endl;
|
||||
// Force delay to maxLength
|
||||
outPointer = inPoint + 1.0;
|
||||
delay = length - 1;
|
||||
}
|
||||
else if (theDelay < 0.5) {
|
||||
cerr << "DelayA: setDelay(" << theDelay << ") less than 0.5 not possible!" << endl;
|
||||
outPointer = inPoint + 0.4999999999;
|
||||
delay = 0.5;
|
||||
}
|
||||
else {
|
||||
outPointer = inPoint - theDelay + 1.0; // outPoint chases inpoint
|
||||
delay = theDelay;
|
||||
}
|
||||
|
||||
if (outPointer < 0)
|
||||
outPointer += length; // modulo maximum length
|
||||
|
||||
outPoint = (long) outPointer; // integer part
|
||||
alpha = 1.0 + outPoint - outPointer; // fractional part
|
||||
|
||||
if (alpha < 0.5) {
|
||||
// The optimal range for alpha is about 0.5 - 1.5 in order to
|
||||
// achieve the flattest phase delay response.
|
||||
outPoint += 1;
|
||||
if (outPoint >= length) outPoint -= length;
|
||||
alpha += (MY_FLOAT) 1.0;
|
||||
}
|
||||
|
||||
coeff = ((MY_FLOAT) 1.0 - alpha) /
|
||||
((MY_FLOAT) 1.0 + alpha); // coefficient for all pass
|
||||
}
|
||||
|
||||
MY_FLOAT DelayA :: tick(MY_FLOAT sample)
|
||||
{
|
||||
inputs[inPoint++] = sample;
|
||||
|
||||
// Increment input pointer modulo length.
|
||||
if (inPoint == length)
|
||||
inPoint -= length;
|
||||
|
||||
// Take delay-line output and increment modulo length.
|
||||
MY_FLOAT temp = inputs[outPoint++];
|
||||
if (outPoint == length)
|
||||
outPoint -= length;
|
||||
|
||||
// Do allpass interpolation delay.
|
||||
outputs[0] = -coeff * outputs[0];
|
||||
outputs[0] += apInput + (coeff * temp);
|
||||
apInput = temp;
|
||||
|
||||
return outputs[0];
|
||||
}
|
||||
/***************************************************/
|
||||
/*! \class DelayA
|
||||
\brief STK allpass interpolating delay line class.
|
||||
|
||||
This Delay subclass implements a fractional-
|
||||
length digital delay-line using a first-order
|
||||
allpass filter. A fixed maximum length
|
||||
of 4095 and a delay of 0.5 is set using the
|
||||
default constructor. Alternatively, the
|
||||
delay and maximum length can be set during
|
||||
instantiation with an overloaded constructor.
|
||||
|
||||
An allpass filter has unity magnitude gain but
|
||||
variable phase delay properties, making it useful
|
||||
in achieving fractional delays without affecting
|
||||
a signal's frequency magnitude response. In
|
||||
order to achieve a maximally flat phase delay
|
||||
response, the minimum delay possible in this
|
||||
implementation is limited to a value of 0.5.
|
||||
|
||||
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
|
||||
*/
|
||||
/***************************************************/
|
||||
|
||||
#include "DelayA.h"
|
||||
#include <iostream.h>
|
||||
|
||||
DelayA :: DelayA()
|
||||
{
|
||||
this->setDelay( 0.5 );
|
||||
apInput = 0.0;
|
||||
doNextOut = true;
|
||||
}
|
||||
|
||||
DelayA :: DelayA(MY_FLOAT theDelay, long maxDelay)
|
||||
{
|
||||
// Writing before reading allows delays from 0 to length-1.
|
||||
length = maxDelay+1;
|
||||
|
||||
if ( length > 4096 ) {
|
||||
// We need to delete the previously allocated inputs.
|
||||
delete [] inputs;
|
||||
inputs = new MY_FLOAT[length];
|
||||
this->clear();
|
||||
}
|
||||
|
||||
inPoint = 0;
|
||||
this->setDelay(theDelay);
|
||||
doNextOut = true;
|
||||
}
|
||||
|
||||
DelayA :: ~DelayA()
|
||||
{
|
||||
}
|
||||
|
||||
void DelayA :: clear()
|
||||
{
|
||||
Delay::clear();
|
||||
apInput = 0.0;
|
||||
}
|
||||
|
||||
void DelayA :: setDelay(MY_FLOAT theDelay)
|
||||
{
|
||||
MY_FLOAT outPointer;
|
||||
|
||||
if (theDelay > length-1) {
|
||||
cerr << "DelayA: setDelay(" << theDelay << ") too big!" << endl;
|
||||
// Force delay to maxLength
|
||||
outPointer = inPoint + 1.0;
|
||||
delay = length - 1;
|
||||
}
|
||||
else if (theDelay < 0.5) {
|
||||
cerr << "DelayA: setDelay(" << theDelay << ") less than 0.5 not possible!" << endl;
|
||||
outPointer = inPoint + 0.4999999999;
|
||||
delay = 0.5;
|
||||
}
|
||||
else {
|
||||
outPointer = inPoint - theDelay + 1.0; // outPoint chases inpoint
|
||||
delay = theDelay;
|
||||
}
|
||||
|
||||
if (outPointer < 0)
|
||||
outPointer += length; // modulo maximum length
|
||||
|
||||
outPoint = (long) outPointer; // integer part
|
||||
alpha = 1.0 + outPoint - outPointer; // fractional part
|
||||
|
||||
if (alpha < 0.5) {
|
||||
// The optimal range for alpha is about 0.5 - 1.5 in order to
|
||||
// achieve the flattest phase delay response.
|
||||
outPoint += 1;
|
||||
if (outPoint >= length) outPoint -= length;
|
||||
alpha += (MY_FLOAT) 1.0;
|
||||
}
|
||||
|
||||
coeff = ((MY_FLOAT) 1.0 - alpha) /
|
||||
((MY_FLOAT) 1.0 + alpha); // coefficient for all pass
|
||||
}
|
||||
|
||||
MY_FLOAT DelayA :: nextOut(void)
|
||||
{
|
||||
if ( doNextOut ) {
|
||||
// Do allpass interpolation delay.
|
||||
nextOutput = -coeff * outputs[0];
|
||||
nextOutput += apInput + (coeff * inputs[outPoint]);
|
||||
doNextOut = false;
|
||||
}
|
||||
|
||||
return nextOutput;
|
||||
}
|
||||
|
||||
MY_FLOAT DelayA :: tick(MY_FLOAT sample)
|
||||
{
|
||||
inputs[inPoint++] = sample;
|
||||
|
||||
// Increment input pointer modulo length.
|
||||
if (inPoint == length)
|
||||
inPoint -= length;
|
||||
|
||||
outputs[0] = nextOut();
|
||||
doNextOut = true;
|
||||
|
||||
// Save the allpass input and increment modulo length.
|
||||
apInput = inputs[outPoint++];
|
||||
if (outPoint == length)
|
||||
outPoint -= length;
|
||||
|
||||
return outputs[0];
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user