Version 4.1

This commit is contained in:
Gary Scavone
2009-03-24 23:02:12 -04:00
committed by Stephen Sinclair
parent 81475b04c5
commit 2f09fcd019
279 changed files with 36223 additions and 25364 deletions

View File

@@ -1,166 +1,166 @@
/***************************************************/
/*! \class Clarinet
\brief STK clarinet physical model class.
This class implements a simple clarinet
physical model, as discussed by Smith (1986),
McIntyre, Schumacher, Woodhouse (1983), and
others.
This is a digital waveguide model, making its
use possibly subject to patents held by Stanford
University, Yamaha, and others.
Control Change Numbers:
- Reed Stiffness = 2
- Noise Gain = 4
- Vibrato Frequency = 11
- Vibrato Gain = 1
- Breath Pressure = 128
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
*/
/***************************************************/
#include "Clarinet.h"
#include "SKINI.msg"
#include <string.h>
Clarinet :: Clarinet(MY_FLOAT lowestFrequency)
{
length = (long) (Stk::sampleRate() / lowestFrequency + 1);
delayLine = new DelayL( (MY_FLOAT)(length / 2.0), length);
reedTable = new ReedTabl();
reedTable->setOffset((MY_FLOAT) 0.7);
reedTable->setSlope((MY_FLOAT) -0.3);
filter = new OneZero;
envelope = new Envelope;
noise = new Noise;
// Concatenate the STK RAWWAVE_PATH to the rawwave file
char path[128];
strcpy(path, RAWWAVE_PATH);
vibrato = new WaveLoop( strcat(path,"rawwaves/sinewave.raw"), TRUE );
vibrato->setFrequency((MY_FLOAT) 5.735);
outputGain = (MY_FLOAT) 1.0;
noiseGain = (MY_FLOAT) 0.2;
vibratoGain = (MY_FLOAT) 0.1;
}
Clarinet :: ~Clarinet()
{
delete delayLine;
delete reedTable;
delete filter;
delete envelope;
delete noise;
delete vibrato;
}
void Clarinet :: clear()
{
delayLine->clear();
filter->tick((MY_FLOAT) 0.0);
}
void Clarinet :: setFrequency(MY_FLOAT frequency)
{
MY_FLOAT freakency = frequency;
if ( frequency <= 0.0 ) {
cerr << "Clarinet: setFrequency parameter is less than or equal to zero!" << endl;
freakency = 220.0;
}
// Delay = length - approximate filter delay.
MY_FLOAT delay = (Stk::sampleRate() / freakency) * 0.5 - 1.5;
if (delay <= 0.0) delay = 0.3;
else if (delay > length) delay = length;
delayLine->setDelay(delay);
}
void Clarinet :: startBlowing(MY_FLOAT amplitude, MY_FLOAT rate)
{
envelope->setRate(rate);
envelope->setTarget(amplitude);
}
void Clarinet :: stopBlowing(MY_FLOAT rate)
{
envelope->setRate(rate);
envelope->setTarget((MY_FLOAT) 0.0);
}
void Clarinet :: noteOn(MY_FLOAT frequency, MY_FLOAT amplitude)
{
this->setFrequency(frequency);
this->startBlowing((MY_FLOAT) 0.55 + (amplitude * (MY_FLOAT) 0.30), amplitude * (MY_FLOAT) 0.005);
outputGain = amplitude + (MY_FLOAT) 0.001;
#if defined(_STK_DEBUG_)
cerr << "Clarinet: NoteOn frequency = " << frequency << ", amplitude = " << amplitude << endl;
#endif
}
void Clarinet :: noteOff(MY_FLOAT amplitude)
{
this->stopBlowing(amplitude * (MY_FLOAT) 0.01);
#if defined(_STK_DEBUG_)
cerr << "Clarinet: NoteOff amplitude = " << amplitude << endl;
#endif
}
MY_FLOAT Clarinet :: tick()
{
MY_FLOAT pressureDiff;
MY_FLOAT breathPressure;
// Calculate the breath pressure (envelope + noise + vibrato)
breathPressure = envelope->tick();
breathPressure += breathPressure * noiseGain * noise->tick();
breathPressure += breathPressure * vibratoGain * vibrato->tick();
// Perform commuted loss filtering.
pressureDiff = -0.95 * filter->tick(delayLine->lastOut());
// Calculate pressure difference of reflected and mouthpiece pressures.
pressureDiff = pressureDiff - breathPressure;
// Perform non-linear scattering using pressure difference in reed function.
lastOutput = delayLine->tick(breathPressure + pressureDiff * reedTable->tick(pressureDiff));
// Apply output gain.
lastOutput *= outputGain;
return lastOutput;
}
void Clarinet :: controlChange(int number, MY_FLOAT value)
{
MY_FLOAT norm = value * ONE_OVER_128;
if ( norm < 0 ) {
norm = 0.0;
cerr << "Clarinet: Control value less than zero!" << endl;
}
else if ( norm > 1.0 ) {
norm = 1.0;
cerr << "Clarinet: Control value greater than 128.0!" << endl;
}
if (number == __SK_ReedStiffness_) // 2
reedTable->setSlope((MY_FLOAT) -0.44 + ( (MY_FLOAT) 0.26 * norm ));
else if (number == __SK_NoiseLevel_) // 4
noiseGain = (norm * (MY_FLOAT) 0.4);
else if (number == __SK_ModFrequency_) // 11
vibrato->setFrequency((norm * (MY_FLOAT) 12.0));
else if (number == __SK_ModWheel_) // 1
vibratoGain = (norm * (MY_FLOAT) 0.5);
else if (number == __SK_AfterTouch_Cont_) // 128
envelope->setValue(norm);
else
cerr << "Clarinet: Undefined Control Number (" << number << ")!!" << endl;
#if defined(_STK_DEBUG_)
cerr << "Clarinet: controlChange number = " << number << ", value = " << value << endl;
#endif
}
/***************************************************/
/*! \class Clarinet
\brief STK clarinet physical model class.
This class implements a simple clarinet
physical model, as discussed by Smith (1986),
McIntyre, Schumacher, Woodhouse (1983), and
others.
This is a digital waveguide model, making its
use possibly subject to patents held by Stanford
University, Yamaha, and others.
Control Change Numbers:
- Reed Stiffness = 2
- Noise Gain = 4
- Vibrato Frequency = 11
- Vibrato Gain = 1
- Breath Pressure = 128
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
*/
/***************************************************/
#include "Clarinet.h"
#include "SKINI.msg"
#include <string.h>
Clarinet :: Clarinet(MY_FLOAT lowestFrequency)
{
length = (long) (Stk::sampleRate() / lowestFrequency + 1);
delayLine = new DelayL( (MY_FLOAT)(length / 2.0), length);
reedTable = new ReedTabl();
reedTable->setOffset((MY_FLOAT) 0.7);
reedTable->setSlope((MY_FLOAT) -0.3);
filter = new OneZero;
envelope = new Envelope;
noise = new Noise;
// Concatenate the STK RAWWAVE_PATH to the rawwave file
char path[128];
strcpy(path, RAWWAVE_PATH);
vibrato = new WaveLoop( strcat(path,"sinewave.raw"), TRUE );
vibrato->setFrequency((MY_FLOAT) 5.735);
outputGain = (MY_FLOAT) 1.0;
noiseGain = (MY_FLOAT) 0.2;
vibratoGain = (MY_FLOAT) 0.1;
}
Clarinet :: ~Clarinet()
{
delete delayLine;
delete reedTable;
delete filter;
delete envelope;
delete noise;
delete vibrato;
}
void Clarinet :: clear()
{
delayLine->clear();
filter->tick((MY_FLOAT) 0.0);
}
void Clarinet :: setFrequency(MY_FLOAT frequency)
{
MY_FLOAT freakency = frequency;
if ( frequency <= 0.0 ) {
cerr << "Clarinet: setFrequency parameter is less than or equal to zero!" << endl;
freakency = 220.0;
}
// Delay = length - approximate filter delay.
MY_FLOAT delay = (Stk::sampleRate() / freakency) * 0.5 - 1.5;
if (delay <= 0.0) delay = 0.3;
else if (delay > length) delay = length;
delayLine->setDelay(delay);
}
void Clarinet :: startBlowing(MY_FLOAT amplitude, MY_FLOAT rate)
{
envelope->setRate(rate);
envelope->setTarget(amplitude);
}
void Clarinet :: stopBlowing(MY_FLOAT rate)
{
envelope->setRate(rate);
envelope->setTarget((MY_FLOAT) 0.0);
}
void Clarinet :: noteOn(MY_FLOAT frequency, MY_FLOAT amplitude)
{
this->setFrequency(frequency);
this->startBlowing((MY_FLOAT) 0.55 + (amplitude * (MY_FLOAT) 0.30), amplitude * (MY_FLOAT) 0.005);
outputGain = amplitude + (MY_FLOAT) 0.001;
#if defined(_STK_DEBUG_)
cerr << "Clarinet: NoteOn frequency = " << frequency << ", amplitude = " << amplitude << endl;
#endif
}
void Clarinet :: noteOff(MY_FLOAT amplitude)
{
this->stopBlowing(amplitude * (MY_FLOAT) 0.01);
#if defined(_STK_DEBUG_)
cerr << "Clarinet: NoteOff amplitude = " << amplitude << endl;
#endif
}
MY_FLOAT Clarinet :: tick()
{
MY_FLOAT pressureDiff;
MY_FLOAT breathPressure;
// Calculate the breath pressure (envelope + noise + vibrato)
breathPressure = envelope->tick();
breathPressure += breathPressure * noiseGain * noise->tick();
breathPressure += breathPressure * vibratoGain * vibrato->tick();
// Perform commuted loss filtering.
pressureDiff = -0.95 * filter->tick(delayLine->lastOut());
// Calculate pressure difference of reflected and mouthpiece pressures.
pressureDiff = pressureDiff - breathPressure;
// Perform non-linear scattering using pressure difference in reed function.
lastOutput = delayLine->tick(breathPressure + pressureDiff * reedTable->tick(pressureDiff));
// Apply output gain.
lastOutput *= outputGain;
return lastOutput;
}
void Clarinet :: controlChange(int number, MY_FLOAT value)
{
MY_FLOAT norm = value * ONE_OVER_128;
if ( norm < 0 ) {
norm = 0.0;
cerr << "Clarinet: Control value less than zero!" << endl;
}
else if ( norm > 1.0 ) {
norm = 1.0;
cerr << "Clarinet: Control value greater than 128.0!" << endl;
}
if (number == __SK_ReedStiffness_) // 2
reedTable->setSlope((MY_FLOAT) -0.44 + ( (MY_FLOAT) 0.26 * norm ));
else if (number == __SK_NoiseLevel_) // 4
noiseGain = (norm * (MY_FLOAT) 0.4);
else if (number == __SK_ModFrequency_) // 11
vibrato->setFrequency((norm * (MY_FLOAT) 12.0));
else if (number == __SK_ModWheel_) // 1
vibratoGain = (norm * (MY_FLOAT) 0.5);
else if (number == __SK_AfterTouch_Cont_) // 128
envelope->setValue(norm);
else
cerr << "Clarinet: Undefined Control Number (" << number << ")!!" << endl;
#if defined(_STK_DEBUG_)
cerr << "Clarinet: controlChange number = " << number << ", value = " << value << endl;
#endif
}