Version 4.1

This commit is contained in:
Gary Scavone
2009-03-24 23:02:12 -04:00
committed by Stephen Sinclair
parent 81475b04c5
commit 2f09fcd019
279 changed files with 36223 additions and 25364 deletions

View File

@@ -1,120 +1,120 @@
/***************************************************/
/*! \class BiQuad
\brief STK biquad (two-pole, two-zero) filter class.
This protected Filter subclass implements a
two-pole, two-zero digital filter. A method
is provided for creating a resonance in the
frequency response while maintaining a constant
filter gain.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
*/
/***************************************************/
#include "BiQuad.h"
#include <math.h>
BiQuad :: BiQuad() : Filter()
{
MY_FLOAT B[3] = {1.0, 0.0, 0.0};
MY_FLOAT A[3] = {1.0, 0.0, 0.0};
Filter::setCoefficients( 3, B, 3, A );
}
BiQuad :: ~BiQuad()
{
}
void BiQuad :: clear(void)
{
Filter::clear();
}
void BiQuad :: setB0(MY_FLOAT b0)
{
b[0] = b0;
}
void BiQuad :: setB1(MY_FLOAT b1)
{
b[1] = b1;
}
void BiQuad :: setB2(MY_FLOAT b2)
{
b[2] = b2;
}
void BiQuad :: setA1(MY_FLOAT a1)
{
a[1] = a1;
}
void BiQuad :: setA2(MY_FLOAT a2)
{
a[2] = a2;
}
void BiQuad :: setResonance(MY_FLOAT frequency, MY_FLOAT radius, bool normalize)
{
a[2] = radius * radius;
a[1] = -2.0 * radius * cos(TWO_PI * frequency / Stk::sampleRate());
if ( normalize ) {
// Use zeros at +- 1 and normalize the filter peak gain.
b[0] = 0.5 - 0.5 * a[2];
b[1] = 0.0;
b[2] = -b[0];
}
}
void BiQuad :: setNotch(MY_FLOAT frequency, MY_FLOAT radius)
{
// This method does not attempt to normalize the filter gain.
b[2] = radius * radius;
b[1] = (MY_FLOAT) -2.0 * radius * cos(TWO_PI * (double) frequency / Stk::sampleRate());
}
void BiQuad :: setEqualGainZeroes()
{
b[0] = 1.0;
b[1] = 0.0;
b[2] = -1.0;
}
void BiQuad :: setGain(MY_FLOAT theGain)
{
Filter::setGain(theGain);
}
MY_FLOAT BiQuad :: getGain(void) const
{
return Filter::getGain();
}
MY_FLOAT BiQuad :: lastOut(void) const
{
return Filter::lastOut();
}
MY_FLOAT BiQuad :: tick(MY_FLOAT sample)
{
inputs[0] = gain * sample;
outputs[0] = b[0] * inputs[0] + b[1] * inputs[1] + b[2] * inputs[2];
outputs[0] -= a[2] * outputs[2] + a[1] * outputs[1];
inputs[2] = inputs[1];
inputs[1] = inputs[0];
outputs[2] = outputs[1];
outputs[1] = outputs[0];
return outputs[0];
}
MY_FLOAT *BiQuad :: tick(MY_FLOAT *vector, unsigned int vectorSize)
{
for (unsigned int i=0; i<vectorSize; i++)
vector[i] = tick(vector[i]);
return vector;
}
/***************************************************/
/*! \class BiQuad
\brief STK biquad (two-pole, two-zero) filter class.
This protected Filter subclass implements a
two-pole, two-zero digital filter. A method
is provided for creating a resonance in the
frequency response while maintaining a constant
filter gain.
by Perry R. Cook and Gary P. Scavone, 1995 - 2002.
*/
/***************************************************/
#include "BiQuad.h"
#include <math.h>
BiQuad :: BiQuad() : Filter()
{
MY_FLOAT B[3] = {1.0, 0.0, 0.0};
MY_FLOAT A[3] = {1.0, 0.0, 0.0};
Filter::setCoefficients( 3, B, 3, A );
}
BiQuad :: ~BiQuad()
{
}
void BiQuad :: clear(void)
{
Filter::clear();
}
void BiQuad :: setB0(MY_FLOAT b0)
{
b[0] = b0;
}
void BiQuad :: setB1(MY_FLOAT b1)
{
b[1] = b1;
}
void BiQuad :: setB2(MY_FLOAT b2)
{
b[2] = b2;
}
void BiQuad :: setA1(MY_FLOAT a1)
{
a[1] = a1;
}
void BiQuad :: setA2(MY_FLOAT a2)
{
a[2] = a2;
}
void BiQuad :: setResonance(MY_FLOAT frequency, MY_FLOAT radius, bool normalize)
{
a[2] = radius * radius;
a[1] = -2.0 * radius * cos(TWO_PI * frequency / Stk::sampleRate());
if ( normalize ) {
// Use zeros at +- 1 and normalize the filter peak gain.
b[0] = 0.5 - 0.5 * a[2];
b[1] = 0.0;
b[2] = -b[0];
}
}
void BiQuad :: setNotch(MY_FLOAT frequency, MY_FLOAT radius)
{
// This method does not attempt to normalize the filter gain.
b[2] = radius * radius;
b[1] = (MY_FLOAT) -2.0 * radius * cos(TWO_PI * (double) frequency / Stk::sampleRate());
}
void BiQuad :: setEqualGainZeroes()
{
b[0] = 1.0;
b[1] = 0.0;
b[2] = -1.0;
}
void BiQuad :: setGain(MY_FLOAT theGain)
{
Filter::setGain(theGain);
}
MY_FLOAT BiQuad :: getGain(void) const
{
return Filter::getGain();
}
MY_FLOAT BiQuad :: lastOut(void) const
{
return Filter::lastOut();
}
MY_FLOAT BiQuad :: tick(MY_FLOAT sample)
{
inputs[0] = gain * sample;
outputs[0] = b[0] * inputs[0] + b[1] * inputs[1] + b[2] * inputs[2];
outputs[0] -= a[2] * outputs[2] + a[1] * outputs[1];
inputs[2] = inputs[1];
inputs[1] = inputs[0];
outputs[2] = outputs[1];
outputs[1] = outputs[0];
return outputs[0];
}
MY_FLOAT *BiQuad :: tick(MY_FLOAT *vector, unsigned int vectorSize)
{
for (unsigned int i=0; i<vectorSize; i++)
vector[i] = tick(vector[i]);
return vector;
}