Initial Commit

This commit is contained in:
2024-10-20 23:08:53 +07:00
commit 6e3782b281
18 changed files with 883 additions and 0 deletions

View File

@@ -0,0 +1,10 @@
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net8.0</TargetFramework>
<ImplicitUsings>enable</ImplicitUsings>
<Nullable>enable</Nullable>
</PropertyGroup>
</Project>

24
Encryption/Program.cs Normal file
View File

@@ -0,0 +1,24 @@
// See https://aka.ms/new-console-template for more information
using System.Numerics;
using System.Text;
using Encryption;
var gen = new RsaKeyGenerator(512);
var keys = gen.GetKeys();
Console.WriteLine($"====BEGIN RSA PRIVATE KEY====\n{keys.PrivateKey}\n====END RSA PRIVATE KEY====");
Console.WriteLine($"====BEGIN RSA PUBLIC KEY====\n{keys.PublicKey}\n====END RSA PUBLIC KEY====");
var message = "Привет, мир!";
var encryptedMessage = RSA.Encrypt(keys.PublicKey, Encoding.UTF8.GetBytes(message));
var decryptedMessage = RSA.Decrypt(keys.PrivateKey, encryptedMessage);
Console.WriteLine($"Original message: {message}");
Console.WriteLine($"Cipher: {Convert.ToBase64String(encryptedMessage)}");
Console.WriteLine($"DecryptedMessage: {Encoding.UTF8.GetString(decryptedMessage)}");

49
Encryption/RSA.cs Normal file
View File

@@ -0,0 +1,49 @@
using System.Numerics;
using System.Security.Cryptography;
namespace Encryption;
public static class RSA
{
// Hash funciton to use. Only cryptographic hash functions can be used.
private static Func<byte[], byte[]> _hash = (data) => SHA256.HashData(data);
/// <summary>
/// Encrypt message with (message^e) mod n
/// </summary>
/// <param name="publicKey"></param>
/// <param name="data"></param>
/// <returns></returns>
public static byte[] Encrypt(RsaPublicKey publicKey, byte[] data)
{
var dataAsBigint = new BigInteger(data);
return BigInteger.ModPow(dataAsBigint, publicKey.E, publicKey.N).ToByteArray();
}
/// <summary>
/// Decrypt cipher with (cipher^d) mod n
/// </summary>
/// <param name="publicKey"></param>
/// <param name="data"></param>
/// <returns></returns>
public static byte[] Decrypt(RsaPrivateKey privateKey, byte[] data)
{
var dataAsBigint = new BigInteger(data);
return BigInteger.ModPow(dataAsBigint, privateKey.D, privateKey.N).ToByteArray();
}
public static byte[] Sign(RsaPrivateKey privateKey, byte[] data)
{
var dataHash = _hash(data);
return Decrypt(privateKey, dataHash);
}
public static bool Verify(RsaPublicKey publicKey, byte[] data, byte[] signature)
{
var dataHash = _hash(data);
var encryptedSignature = Encrypt(publicKey, signature);
return dataHash == encryptedSignature;
}
}

View File

@@ -0,0 +1,297 @@
using System.Numerics;
using System.Text;
using System.Text.Json;
namespace Encryption;
public class RsaKeyGenerator
{
private static readonly Random _random = new(Environment.TickCount);
private BigInteger _d;
private BigInteger _e;
private BigInteger _n;
private BigInteger _p;
private BigInteger _q;
private BigInteger _r;
public RsaKeyGenerator(int bitLength)
{
//The "e" value for low compute time RSA encryption.
//Only has two bits of value 1.
const int e = 0x10001;
//Generating primes, checking if the GCD of (n-1)(p-1) and e is 1.
do
{
_q = FindPrime(bitLength / 2);
} while (_q % e == 1);
do
{
_p = FindPrime(bitLength / 2);
} while (_p % e == 1);
//Setting n as QP, phi (represented here as r) to tortiary.
_n = _q * _p;
_r = (_p - 1) * (_q - 1);
//Computing D such that ed = 1%x.
_d = ModularInverse(e, _r);
_e = e;
}
/// <summary>
/// Finds a prime of the given bit length, to be used as n and p in RSA key calculations.
/// </summary>
/// <param name="bitlength"></param>
/// <returns></returns>
private static BigInteger FindPrime(int bitlength)
{
//Generating a random number of bit length.
if (bitlength % 8 != 0) throw new Exception("Invalid bit length for key given, cannot generate primes.");
//Filling bytes with pseudorandom.
var randomBytes = new byte[bitlength / 8 + 1];
_random.NextBytes(randomBytes);
//Making the extra byte 0x0 so the BigInts are unsigned (little endian).
randomBytes[randomBytes.Length - 1] = 0x0;
//Setting the bottom bit and top two bits of the number.
//This ensures the number is odd, and ensures the high bit of N is set when generating keys.
SetBitInByte(0, ref randomBytes[0]);
SetBitInByte(7, ref randomBytes[randomBytes.Length - 2]);
SetBitInByte(6, ref randomBytes[randomBytes.Length - 2]);
while (true)
{
//Performing a Rabin-Miller primality test.
var isPrime = RabinMillerTest(randomBytes, 40);
if (isPrime)
{
break;
}
IncrementByteArrayLE(ref randomBytes, 2);
var upper_limit = new byte[randomBytes.Length];
//Clearing upper bit for unsigned, creating upper and lower bounds.
upper_limit[randomBytes.Length - 1] = 0x0;
var upper_limit_bi = new BigInteger(upper_limit);
var lower_limit = upper_limit_bi - 20;
var current = new BigInteger(randomBytes);
if (lower_limit < current && current < upper_limit_bi)
//Failed to find a prime, returning -1.
//Reached limit with no solutions.
return new BigInteger(-1);
}
//Returning working BigInt.
return new BigInteger(randomBytes);
}
/// <summary>
/// A Rabin Miller primality test which returns true or false.
/// </summary>
/// <param name="num">The number to check for being likely prime.</param>
/// <returns></returns>
private static bool RabinMillerTest(BigInteger source, int certainty)
{
//Filter out basic primes.
if (source == 2 || source == 3) return true;
//Below 2, and % 0? Not prime.
if (source < 2 || source % 2 == 0) return false;
//Finding even integer below number.
var d = source - 1;
var s = 0;
while (d % 2 == 0)
{
d /= 2;
s += 1;
}
//Getting a random BigInt using bytes.
var rng = new Random(Environment.TickCount);
var bytes = new byte[source.ToByteArray().LongLength];
BigInteger a;
//Looping to check random factors.
for (var i = 0; i < certainty; i++)
{
do
{
//Generating new random bytes to check as a factor.
rng.NextBytes(bytes);
a = new BigInteger(bytes);
} while (a < 2 || a >= source - 2);
//Checking for x=1 or x=s-1.
var x = BigInteger.ModPow(a, d, source);
if (x == 1 || x == source - 1) continue;
//Iterating to check for prime.
for (var r = 1; r < s; r++)
{
x = BigInteger.ModPow(x, 2, source);
if (x == 1)
return false;
if (x == source - 1) break;
}
if (x != source - 1) return false;
}
//All tests have failed to prove composite, so return prime.
return true;
}
/// <summary>
/// An overload wrapper for the RabinMillerTest which accepts a byte array.
/// </summary>
/// <param name="bytes"></param>
/// <param name="acc_amt"></param>
/// <returns></returns>
private static bool RabinMillerTest(byte[] bytes, int acc_amt)
{
var b = new BigInteger(bytes);
return RabinMillerTest(b, acc_amt);
}
/// <summary>
/// Performs a modular inverse on u and v,
/// such that d = gcd(u,v);
/// </summary>
/// <returns>D, such that D = gcd(u,v).</returns>
private static BigInteger ModularInverse(BigInteger u, BigInteger v)
{
//Declaring new variables on the heap.
BigInteger inverse, u1, u3, v1, v3, t1, t3, q = new();
//Staying on the stack, quite small, so no need for extra memory time.
BigInteger iteration;
//Stating initial variables.
u1 = 1;
u3 = u;
v1 = 0;
v3 = v;
//Beginning iteration.
iteration = 1;
while (v3 != 0)
{
//Divide and sub q, t3 and t1.
q = u3 / v3;
t3 = u3 % v3;
t1 = u1 + q * v1;
//Swap variables for next pass.
u1 = v1;
v1 = t1;
u3 = v3;
v3 = t3;
iteration = -iteration;
}
if (u3 != 1)
//No inverse, return 0.
return 0;
if (iteration < 0)
inverse = v - u1;
else
inverse = u1;
//Return.
return inverse;
}
/// <summary>
/// Returns the greatest common denominator of both BigIntegers given.
/// </summary>
/// <returns>The GCD of A and B.</returns>
private static BigInteger GCD(BigInteger a, BigInteger b)
{
//Looping until the numbers are zero values.
while (a != 0 && b != 0)
if (a > b)
a %= b;
else
b %= a;
//Returning check.
return a == 0 ? b : a;
}
/// <summary>
/// Sets a bit in a given ref byte, using an index from 0-7 from the right.
/// </summary>
/// <param name="bitNumFromRight">The index of the bit number from the lesser side of the byte.</param>
/// <param name="toSet">The referenced byte to set.</param>
private static void SetBitInByte(int bitNumFromRight, ref byte toSet)
{
var mask = (byte)(1 << bitNumFromRight);
toSet |= mask;
}
/// <summary>
/// Increments the byte array as a whole, by a given amount. Assumes little endian.
/// Assumes unsigned randomBytes.
/// </summary>
private static void IncrementByteArrayLE(ref byte[] randomBytes, int amt)
{
var n = new BigInteger(randomBytes);
n += amt;
randomBytes = n.ToByteArray();
}
/// <summary>
/// Decrements the byte array as a whole, by a given amount. Assumes little endian.
/// Assumes unsigned randomBytes.
/// </summary>
private static void DecrementByteArrayLE(ref byte[] randomBytes, int amt)
{
var n = new BigInteger(randomBytes);
n -= amt;
randomBytes = n.ToByteArray();
}
public RsaKeyPair GetKeys()
{
return new RsaKeyPair(new RsaPrivateKey(_d, _n), new RsaPublicKey(_e, _n));
}
}
public record RsaPublicKey(BigInteger E, BigInteger N)
{
public override string ToString()
{
return Convert.ToBase64String(Encoding.UTF8.GetBytes($"e:{E};n:{N}"));
}
public string ToJsonString()
{
var e = E.ToString();
var n = N.ToString();
var obj = new Dictionary<string, string>
{
["E"] = e,
["N"] = n,
};
return JsonSerializer.Serialize(obj);
}
}
public record RsaPrivateKey(BigInteger D, BigInteger N)
{
public override string ToString()
{
return Convert.ToBase64String(Encoding.UTF8.GetBytes($"d:{D};n:{N}"));
}
}
public record RsaKeyPair(RsaPrivateKey PrivateKey, RsaPublicKey PublicKey);